We study the role of zero-point quantum fluctuations in a range of magnetic states which on the classical level are close to spin-aligned ferromagnets. These include Skyrmion textures characterized by nonzero topological charge, and topologically-trivial spirals arising from the competition of the Heisenberg and Dzyaloshinskii-Moriya interactions. For the former, we extend our previous results on quantum exactness of classical Bogomolny-Prasad-Sommerfield (BPS) ground-state degeneracies to the general case of Kähler manifolds, with a specific example of Grassmann manifolds Gr(M, N). These are relevant to quantum Hall ferromagnets with N internal states and integer filling factor M. A promising candidate for their experimental implementation is monolayer graphene with N = 4 corresponding to spin and valley degrees of freedom at the charge neutrality point with M = 2 filled Landau levels. We find that the vanishing of the zero-point fluctuations in taking the continuum limit occurs differently in the case of BPS states compared to the case of more general smooth textures, with the latter exhibiting more pronounced lattice effects. This motivates us to consider the vanishing of zero-point fluctuations in such near-ferromagnets more generally. We present a family of lattice spin models for which the vanishing of zero-point fluctuations is evident, and show that some spirals can be thought of as having nonzero but weak zero-point fluctuations on account of their closeness to this family. Between them, these instances provide concrete illustrations of how the Casimir energy, dependent on the full UV-structure of the theory, evolves as the continuum limit is taken. 1 2 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.