Detection of periodicity in the broad-band non-thermal emission of blazars has so far been proven to be elusive. However, there are a number of scenarios which could lead to quasi-periodic variations in blazar light curves. For example, orbital or thermal/viscous period of accreting matter around central supermassive black holes could, in principle, be imprinted in the multi-wavelength emission of small-scale blazar jets, carrying as such crucial information about plasma conditions within the jet launching regions. In this paper, we present the results of our time series analysis of ∼ 9.2 year-long, and exceptionally well-sampled optical light curve of the BL Lac OJ 287. The study primarily uses the data from our own observations performed at the Mt. Suhora and Kraków Observatories in Poland, and at the Athens Observatory in Greece. Additionally, SMARTS observations were used to fill in some of the gaps in the data. The Lomb-Scargle Periodogram and the Weighted Wavelet Z-transform methods were employed to search for the possible QPOs in the resulting optical light curve of the source. Both the methods consistently yielded possible quasi-periodic signal around the periods of ∼ 400 and ∼ 800 days, the former one with a significance (over the underlying colored noise) of ≥ 99%. A number of likely explanations for such are discussed, with a preference given to a modulation of the jet production efficiency by highly magnetized accretion disks. This supports the previous findings and the interpretation reported recently in the literature for OJ 287 and other blazar sources.
We report the discovery of the largest giant radio galaxy yet, J1420À0545: a FR type II radio source with an angular size of 17.4 0 , identified with an optical galaxy at z ¼ 0:3067. Thus, the projected linear size of the radio structure is 4.69 Mpc (if we assume that H 0 ¼ 71 km s À1 Mpc À1 , m ¼ 0:27, and à ¼ 0:73). This makes it larger than 3C 236, which is the largest double radio source known to date. New radio observations with the 100 m Effelsberg telescope and the Giant Metrewave Radio Telescope, as well as optical identification with a host galaxy and its optical spectroscopy with the William Herschel Telescope, are reported. The spectrum of J1420À0545 is typical of elliptical galaxies in which continuum emission with the characteristic 4000 8 discontinuity and the H and K absorption lines are dominated by evolved stars. The dynamical age of the source, its jets' power, the energy density, and the equipartition magnetic field are calculated and compared with the corresponding parameters of other giant and normal-sized radio galaxies from a comparison sample. The source is characterized by the exceptionally low density of the surrounding IGM and an unexpectedly high expansion speed of the source along the jet axis. All of these may suggest a large inhomogeneity of the IGM.
OpenBU http://open.bu.edu Astronomy BU Open Access Articles 2018-08-20 Stochastic modeling of multiwavelength variability of the classical BL Lac Object OJ287...
OJ 287 is a BL Lac object at redshift z= 0.306 that has shown double‐peaked bursts at regular intervals of ∼12 yr during the last ∼40 yr. We analyse optical photopolarimetric monitoring data from 2005 to 2009, during which the latest double‐peaked outburst occurred. The aim of this study is twofold: firstly, we aim to analyse variability patterns and statistical properties of the optical polarization light curve. We find a strong preferred position angle in optical polarization. The preferred position angle can be explained by separating the jet emission into two components: an optical polarization core and chaotic jet emission. The optical polarization core is stable on time‐scales of years and can be explained as emission from an underlying quiescent jet component. The chaotic jet emission sometimes exhibits a circular movement in the Stokes plane. We find six such events, all on the time‐scales of 10–20 d. We interpret these events as a shock front moving forwards and backwards in the jet, swiping through a helical magnetic field. Secondly, we use our data to assess different binary black hole models proposed to explain the regularly appearing double‐peaked bursts in OJ 287. We compose a list of requirements a model has to fulfil to explain the mysterious behaviour observed in OJ 287. The list includes not only characteristics of the light curve but also other properties of OJ 287, such as the black hole mass and restrictions on accretion flow properties. We rate all existing models using this list and conclude that none of the models is able to explain all observations. We discuss possible new explanations and propose a new approach to understanding OJ 287. We suggest that both the double‐peaked bursts and the evolution of the optical polarization position angle could be explained as a sign of resonant accretion of magnetic field lines, a ‘magnetic breathing’ of the disc.
We have studied three most recent precursor flares in the light curve of the blazar OJ 287 while invoking the presence of a precessing binary black hole in the system to explain the nature of these flares. Precursor flare timings from the historical light curves are compared with theoretical predictions from our model that incorporate effects of an accretion disk and post-Newtonian description for the binary black hole orbit. We find that the precursor flares coincide with the secondary black hole descending towards the accretion disk of the primary black hole from the observed side, with a mean z-component of approximately z c = 4000 AU. We use this model of precursor flares to predict that precursor flare of similar nature should happen around 2020.96 before the next major outburst in 2022. Subject headings: BL Lacertae objects: individual (OJ 287) -quasars: individual (OJ 287)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.