The influence of moving dislocations on mass-transfer and the phenomena, accompanying it in pulse-deformed metals is studied in a real-time. Transport of self-interstitial atoms (SIAs) by mobile edge dislocations in crystal with FCC lattice is investigated by molecular dynamics. A strain rate (106s-1) and dislocation density (1010– 1012cm-2) in simulated crystal corresponds to a laser effect in a Q-factor mode. The experimental investigations in a real-time are performed by recording of electrical signal induced by the laser pulse irradiation of metal foils of different crystal structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.