The subcellular site of phosphatidylglycerol (PG) formation for lung surfactant has not been convincingly clarified. To approach this problem we analysed the acyl species pattern of lung PG in mitochondria, microsomes and surfactant by h.p.l.c. separation of its 1,2-diacyl-3-naphthylurethane derivatives. Both mitochondrial and microsomal PG proved identical with surfactant PG, containing the major species 1-palmitoyl-2-oleoyl-PG and 1,2-dipalmitoyl-PG. The fatty acid composition of mitochondrial PG differs markedly from that of diphosphatidylglycerol. This may be taken as an indication that mitochondrial PG is synthesized on purpose to form surfactant, rather than being only the precursor of diphosphatidylglycerol. In vitro, sn-[U-14C]glycerol 3-phosphate incorporation into PG of mitochondria or microsomes occurs in the presence of CTP, ATP and CoA but independently of the supply of exogenous lipoidic precursors. Although the rate in vitro of autonomous PG synthesis, and the endogenous PG content, are higher in mitochondria than in microsomes, it is assumed that both subcellular fractions are involved in PG formation for surfactant.
The fatty acid distribution of the main lipid fractions: triglycerides (TG), phosphatidylcholine (PCh), phosphatidylethanolamine (PE), and sphingomyelin (Sph) of muscle from 6 patients with progressive muscular dystrophy (p.m.d.), Duchenne, 8 to 12 years old was estimated and compared with normal controls of different age. In view of the results of several authors about varied fatty acid distribution in immature muscle a third group comprising samples of neonatal muscle was studied. 1. The fatty acid pattern of the lipid fractions TG, Sph, and PE from muscle of patients with p.m.d. shows no important variation in comparison to normal controls. In contrast to this the fatty acid distribution in PCh is extremely varied: the percentage of 18:2 is decreased and corrrespondingly the content of 18:1 is increased. In view of the high percentage (nearly 10%) in which linoleic acid is substituted by oleic acid in PCh, effects on the plasma membrane are to be expected. 2. The fatty acid pattern in neonatal muscle shows in narly all positions of the fractions TG, Sph, PE, and PCh a different distribution from normal or dystrophic muscle. In view of the most important variation in dystrophic muscle it must be stated that generally 18:2 is decreased. This deficit was replaced by an increase of all other fatty acids (not only at a substitution by 18:1 as given in p.m.d.). Therefore the diminished content of linoleic acid in PCh of neonatal and dystrophic muscle cannot be interpreted as expression of a corresponding or similar lipid metabolism in both tissues. The results were seen as signs of significant qualitative alterations especially of PCh in p.m.d. They were discussed as proof of our thesis that the basic defect in p.m.d. concerns the specific acylation of PCh with linoleic acid.
Lung surfactant is exposed to strongly oxidizing conditions. We examined the hypothesis that in lung, lipophilic antioxidants are secreted together with surfactant to counteract the peroxidation of surfactant constituents. Lung lavage and the subfractions of the alveolar surfactant contain the lipophilic antioxidants vitamin E, vitamin A, and plasmalogens. The specific radioactivity of vitamin E isolated from serum, lung homogenate, lamellar bodies, and lung lavage increased linearly up to 3 h after intraperitoneal application of [3H]tocopherol. [3H]tocopherol was secreted in situ together with [14C]palmitic acid-labeled phospholipid in response to isoproterenol. Type II cells cultured in presence of [3H]tocopherol or of [3H]cholecalciferol and [14C]palmitic acid responded to isoproterenol by a time-dependent increase in secretion of [3H]tocopherol and of 14C-labeled phospholipids but not of [3H]cholecalciferol. The isoproterenol-stimulated secretion of [3H]tocopherol and of 14C-labeled phospholipids by type II cells is inhibited by surfactant protein A. We conclude that the alveolar surfactant contains lipophilic antioxidants as integral constituents. [3H]tocopherol seems to be secreted together with surfactant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.