The term ``sensitized luminescence'' in crystalline phosphors refers to the phenomenon whereby an impurity (activator, or emitter) is enabled to luminesce upon the absorption of light in a different type of center (sensitizer, or absorber) and upon the subsequent radiationless transfer of energy from the sensitizer to the activator. The resonance theory of Förster, which involves only allowed transitions, is extended to include transfer by means of forbidden transitions which, it is concluded, are responsible for the transfer in all inorganic systems yet investigated. The transfer mechanisms of importance are, in order of decreasing strength, the overlapping of the electric dipole fields of the sensitizer and the activator, the overlapping of the dipole field of the sensitizer with the quadrupole field of the activator, and exchange effects. These mechanisms will give rise to ``sensitization'' of about 103−104, 102, and 30 lattice sites surrounding each sensitizer in typical systems. The dependence of transfer efficiency upon sensitizer and activator concentrations and on temperature are discussed. Application is made of the theory to experimental results on inorganic phosphors, and further experiments are suggested.
A theory is presented for concentration quenching in solid systems, based on the migration of excitation energy from one activator center to another and eventually to an imperfection which may act as an energy sink. Calculations are made on the dependence of the fluorescence yield on concentration, and to indicate typical activator concentrations at which appreciable quenching may be expected to occur. If the transition in the activator is of the electric dipole or electric quadrupole type, appreciable quenching may arise when the activator concentration is 10-3 to 10-2; if it is a magnetic dipole transition, transfer will occur by exchange, rather than by overlapping of magnetic dipole fields, and the critical concentration will be of the order of a few percent. The implications of transfer phenomena upon the observed absence of luminescence in most ``pure'' inorganic crystals are discussed, and it is concluded that transfer rates are so high in strongly absorbing crystals that the energy can easily migrate to a very few sinks dispersed throughout the lattice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.