Volumetric radiative loss measurements, correlated with temperature in the range of 10 000 to 26 000°K, have been made on an argon plasma. Pressures of 0.5, 1.0, and 2.0 atm have been used. The 1.0-atm measurements have been corrected for both absorption and ultraviolet emission and the results agree with those of Emmons in the common temperature range. The 6965 Ar I line has also been studied yielding lineshifts, halfwidths, absorption and emission coefficients. The line shift and halfwidth results are below theoretical predictions. Transition probabilities determined from both emission and absorption studies are found to be in reasonable agreement.
This paper presents the findings of an Engineering Curriculum Task Force of the College of Engineering and Applied Sciences at Arizona State University. The Task Force's charge was to explore changes that would better prepare baccalaureate‐level engineers for the practice of their profession in the next decade. The generic data developed in the process used by the Task Force are given here. For example, a set of ten important attributes deemed desirable for newly graduated engineers and produced by education, is presented. Also, the rankings by industry, alumni, students, and faculty, of the relative importance of each of these ten attributes and the performance of new graduates in each, are given. Generic curriculum features necessary for successful generation of these attributes are discussed. Finally, the results of an alumni survey are presented which show the overwhelming support for a broad‐based undergraduate program by graduates of all degree programs.
In this paper we present a simple mathematical model for angiogenesis in wound healing and then compare the results of theoretical predictions from computer simulations with actual experimental data. Numerical simulations of the model equations exhibit many of the characteristic features of wound healing in soft tissue. For example, the steady propagation of the wound healing unit through the wound space, the development of a dense band of capillaries near the leading edge of the unit, and the elevated vessel density associated with newly healed wounds, prior to vascular remodelling, are all discernible from the simulations. The qualitative accuracy of the initial model is assessed by comparing the numerical results with independent clinical measurements that show how the surface area of a range of wounds changes over time. The model is subsequently modified to include the effect of vascular remodelling and its impact on the spatio-temporal structure of the vascular network investigated. Predictions are made concerning the effect that changes in physical parameters have on the healing process and also regarding the manner in which remodelling is initiated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.