The analysis of pressure loss characteristics for pulse jet filters suggests that the relationship between dust adhesion to the fabric and the opposing force generated by pulse jet action plays a major role in dust removal. Hence, fabric cleanability is examined in terms of the adhesion-cohesion forces bonding the dust to the fabric vs. the intensity and frequency of the dust dislodgement forces produced by the high energy air pulses. The effect of jet size and location, jet air volume, and the intensity (pressure) and duration of the jet pulses is related to operating pressure loss.The mechanics of energy transfer from the jet pulse to the dustladen fabric are explored in terms of jet pressure, solenoid valve action, the ratio of delivered pulse air volume to bag (tube) volume, and the elastic and flex properties of the felt bags. Effective and actual fabric dust holdings before and after cleaning are discussed with respect to steady-state dust deposition and removal rates, and operating pressure losses. Finally, predictive equations are proposed for estimating pressure loss over a broad range of design and operating parameters.
Background Studies
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.