Concentration–discharge (C‐Q) relationships reflect material sources, storage, reaction, proximity, and transport in catchments. Differences in hydrologic pathways and connectivity influence observed C‐Q patterns at the catchment outlet. We examined solute and sediment C‐Q relationships at event and interannual timescales in a small mid‐Atlantic (USA) catchment. We found systematic differences in the C‐Q behaviour of geogenic/exogenous solutes (e.g., calcium and nitrate), biologically associated solutes (e.g., dissolved organic carbon), and particulate materials (e.g., total suspended solids). Negative log(C)–log(Q) regression slopes, indicating dilution, were common for geogenic solutes whereas positive slopes, indicating concentration increase, were common for biologically associated solutes. Biologically associated solutes often exhibited counterclockwise hysteresis during events whereas geogenic solutes exhibited clockwise hysteresis. Across event and interannual timescales, solute C‐Q patterns are linked to the spatial distribution of hydrologic sources and the timing and sequence of hydro‐biogeochemical source contributions to the stream. Groundwater is the primary source of stormflow during the earliest and latest stages of events, whereas precipitation and soil water become increasingly connected to the stream near peakflow. This sequence and timing of flowpath connectivity results in dilution and clockwise hysteresis for geogenic/exogenous solutes and concentration increase and counterclockwise hysteresis for biologically associated solutes. Particulate materials demonstrated positive C‐Q slopes over the long‐term and clockwise hysteresis during individual events. Drivers of particulate and solute C‐Q relationships differ, based on longitudinal and lateral expansion of active channels and changing shear stresses with increasing flows. Although important distinctions exist between the drivers of solute and sediment C‐Q relationships, overall solute and sediment C‐Q patterns at event and interannual timescales reflect consistent catchment hydro‐biogeochemical processes.
Abstract. Trees, the most successful biological power plants on earth, build and plumb the critical zone (CZ) in ways that we do not yet understand. To encourage exploration of the character and implications of interactions between trees and soil in the CZ, we propose nine hypotheses that can be tested at diverse settings. The hypotheses are roughly divided into those about the architecture (building) and those about the water (plumbing) in the CZ, but the two functions are intertwined. Depending upon one's disciplinary background, many of the nine hypotheses listed below may appear obviously true or obviously false. (1) Tree roots can only physically penetrate and biogeochemically comminute the immobile substrate underlying mobile soil where that underlying substrate is fractured or pre-weathered. (2) In settings where the thickness of weathered material, H , is large, trees primarily shape the CZ through biogeochemical reactions within the rooting zone. (3) In forested uplands, the thickness of mobile soil, h, can evolve toward a steady state because of feedbacks related to root disruption and tree throw. (4) In settings where h H and the rates of uplift and erosion are low, the uptake of phosphorus into trees is buffered by the fine-grained fraction of the soil, and the ultimate source of this phosphorus is dust. (5) In settings of limited water availability, trees maintain the highest length density of functional roots at depths where water can be extracted over most of the growing season with the least amount of energy expenditure. (6) Trees grow the majority of their roots in the zone where the most growth-limiting resource is abundant, but they also grow roots at other depths to forage for other resources and to hydraulically redistribute those resources to depths where they can be taken up more efficiently. (7) Trees rely on matrix water in the unsaturated zone that at times may have anPublished by Copernicus Publications on behalf of the European Geosciences Union. 5116 S. L. Brantley et al.: Reviews and syntheses: on the roles trees play in building and plumbing the critical zone isotopic composition distinct from the gravity-drained water that transits from the hillslope to groundwater and streamflow. (8) Mycorrhizal fungi can use matrix water directly, but trees can only use this water by accessing it indirectly through the fungi. (9) Even trees growing well above the valley floor of a catchment can directly affect stream chemistry where changes in permeability near the rooting zone promote intermittent zones of water saturation and downslope flow of water to the stream. By testing these nine hypotheses, we will generate important new cross-disciplinary insights that advance CZ science.
[1] Fine particles are necessary for watershed biogeochemical cycling and stream metabolic processes but pose a risk to water quality if present in excess or if carrying sorbed contaminants. Despite having low settling velocities, these particles can leave suspension during downstream transport by a series of processes such as hyporheic filtration, flocculation, and biofilm entrapment. The objective of this study is to evaluate the retention of clay particles within a stream reach due to streambed filtration. To this end, we quantify hyporheic exchange through coupled formulations of turbulent surface water flow in the overlying stream and saturated groundwater flow in the streambed. Particle filtration models are informed by flow-through column experiments conducted with repacked streambed material. Results of our model simulations of hyporheic exchange demonstrate that streambed particle filtration depends on overlying streamflow and, to a lesser extent, on hyporheic zone substrate. Retention of suspended particles within the streambed sediments more than doubles between high and drought flows and varies by less than 45% across substrate grain size classes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.