Computer calculations have been made of the propagation of the shock from an explosion at the origin of a spherically symmetric, exponential, ideal-gas atmosphere. A generalization of Sachs scaling has been devised which allows a very convenient systematization of the pressure-distance curves, and which shows that, for a suitable normalization, these curves are straight lines throughout a significant range of yield, distance, and degree of atmospheric inhomogeneity. This technique is also used to investigate the validity of modified Sachs scaling, an approximate method of generating pressure-distance curves for an inhomogeneous atmosphere from the known results for a homogeneous atmosphere. It is found that modified Sachs scaling yields results which deviate from the hydrodynamic code calculations by at most 20% in the weak shock regime. This result is essentially independent of yield. Some comments are made on the applicability of these methods to the problem of shocks from explosions in horizontally stratified, real-gas atmospheres.
Hydrocode calculations for spherical shock propagation using the artificial-viscosity method are carried out to 0.2 psi overpressure for a nuclear explosion and for a TNT explosion. An ideal-gas integration from the literature is used to extend the results to 1.6 x 10-4 psi. Below 1.0 psi, 1 kt nuclear isequivalent to 0.7 kilotons of TNT.
PUBLISHED
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.