A linkage map of the porcine genome has been developed by segregation analysis of 239 genetic markers. Eighty-one of these markers correspond to known genes. Linkage groups have been assigned to all 18 autosomes plus the X Chromosome (Chr). As 69 of the markers on the linkage map have also been mapped physically (by others), there is significant integration of linkage and physical map data. Six informative markers failed to show linkage to these maps. As in other species, the genetic map of the heterogametic sex (male) was significantly shorter (approximately 16.5 Morgans) than the genetic map of the homogametic sex (female) (approximately 21.5 Morgans). The sex-averaged genetic map of the pig was estimated to be approximately 18 Morgans in length. Mapping information for 61 Type I loci (genes) enhances the contribution of the pig gene map to comparative gene mapping. Because the linkage map incorporates both highly polymorphic Type II loci, predominantly microsatellites, and Type I loci, it will be useful both for large experiments to map quantitative trait loci and for the subsequent isolation of trait genes following a comparative and candidate gene approach.
A F2 population derived from a cross between European Large White and Chinese Meishan pigs was established in order to study the genetic basis of breed differences for growth and fat traits. Chromosome 4 was chosen for initial study as previous work had revealed quantitative trait loci (QTLs) on this chromosome affected growth and fat traits in a Wild Boar x Large White cross. Individuals in the F2 population were typed for nine markers spanning a region of approximately 124 CM. We found evidence for QTLs affecting growth between weaning and the end of test (additive effect: 43.4 g/day) and fat depth measured in the mid-back position (additive effect: 1.82 mm). There was no evidence of interactions between the QTLs and sex, grandparents or F1 sires, suggesting that the detected QTLs were fixed for alternative alleles in the Meishan and Large White breeds. Comparison of locations suggests that these QTLs could be the same as those found in the Wild Boar x Large White cross.
The Bartels respiratory virus panel detection kit is an indirect fluorescent-antibody (IFA) method that uses pooled and individual antisera for tissue culture confirmation of seven respiratory viruses. We evaluated these reagents for detecting viral antigen in shell vial cultures and by direct staining of cells from respiratory specimens. The isolation from 254 specimens of respiratory viruses in shell vial cultures compared with standard tube cultures was highly sensitive (94%) and specific (97.3%). The numbers of viral isolates detected in three consecutive years of testing with shell vial cultures were 68 of 254 (26.8%), 101 of 381 (26.5%), and 122 of 430 (28.4%). IFA direct staining of all 1,065 specimens resulted in 183 (17.2%) being uninterpretable because of inadequate numbers of cells or interfering fluorescence. The sensitivity and specificity of the interpretable IFA direct stains in comparison with shell vial cultures were 85.9 and 87.1%, respectively. For detection of 881 adequate specimens, Bartels respiratory syncytial virus IFA direct staining compared with an Ortho Diagnostics Systems direct fluorescent-antibody test for respiratory syncytial virus RSV was highly sensitive (95.5%) and specific (97%). Shell vial cultures combined with Bartels IFA reagents are a rapid alternative to standard tube cultures. Bartels IFA direct staining with individual antisera provides useful same-day screening of respiratory specimens, but the antiserum pool was not effective in screening for positive specimens because of excessive amounts of nonspecific fluorescence.
Data from the F2 generation of a Large White (LW) ✕ Meishan (MS) crossbred population were analysed to detect quantitative trait loci (QTL) for leg and gait scores, osteochondrosis and physis scores. Legs, feet and gait score were assessed in 308 F2 animals at 85 ( + 5) kg and osteochondrosis and physis scores were recorded for the right foreleg after slaughter. A genome scan was performed using 111 genetic markers chosen to span the genome that were genotyped on the F2 animals and their F1 parents and purebred grandparents. A QTL on chromosome 1 affecting gait score was significant at the genome-wide significance level. Additional QTL significant at the chromosome-wide 5% threshold level (approx. equivalent to the genome-wide suggestive level) were detected on chromosome 1 for front feet and back legs scores, on chromosome 13 for front legs and front feet scores, on chromosome 14 for front legs, front feet and back legs scores and on chromosome 15 for back feet score. None of the QTL for osteochondrosis score exceeded the chromosome-wide suggestive level, but one chromosome-wide QTL for physis score was found on chromosome 7. On chromosome 1, gait and front feet scores mapped to the middle of the chromosome and showed additive effects in favour of the LW alleles and no dominance effects. The QTL for back legs score mapped to the distal end of the chromosome and showed a dominant effect and no additive effect. On chromosomes 14 and 15, the LW allele was again superior to the MS allele. On chromosome 13, there were both additive and dominance effects in favour of the MS allele. The MS alleles on chromosome 13 may have potential for introgression into a commercial LW population. The other putative QTLs identified may have value in marker-assisted selection in LW or MS-synthetic populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.