Abstract-We present a modeling framework for hybrid systems intended to capture the interaction of event-driven and time-driven dynamics. This is motivated by the structure of many manufacturing environments where discrete entities (termed jobs) are processed through a network of workcenters so as to change their physical characteristics. Associated with each job is a temporal state subject to event-driven dynamics and a physical state subject to timedriven dynamics. Based on this framework, we formulate and analyze a class of optimal control problems for single-stage processes. First-order optimality conditions are derived and several properties of optimal state trajectories (sample paths) are identified which significantly simplify the task of obtaining explicit optimal control policies.
SUMMARYThis paper considers optimal control problems for a class of hybrid systems motivated by the structure of manufacturing environments that integrate process and operations control. We derive new necessary and su$cient conditions that allow us to determine the structure of the optimal sample path and hence decompose a large non-convex, non-di!erentiable problem into a set of smaller convex, constrained optimization problems. Using these conditions, we develop two e$cient, low-complexity, scalable algorithms for explicitly determining the optimal controls. Several numerical examples are included to illustrate the e$cacy of the proposed algorithms.
Abstract-We present a modeling framework for hybrid systems intended to capture the interaction of event-driven and time-driven dynamics. This is motivated by the structure of many manufacturing environments where discrete entities (termed jobs) are processed through a network of workcenters so as to change their physical characteristics. Associated with each job is a temporal state subject to event-driven dynamics and a physical state subject to timedriven dynamics. Based on this framework, we formulate and analyze a class of optimal control problems for single-stage processes. First-order optimality conditions are derived and several properties of optimal state trajectories (sample paths) are identified which significantly simplify the task of obtaining explicit optimal control policies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.