We review work by the authors on thermal activation in nanoscopic magnetic systems. These systems present unique difficulties in analyzing noise-induced escape over a barrier, including the presence of nonlocal interactions, nongradient terms in the energy functional, and dynamical textures as initial or saddle states. We begin with a discussion of magnetic reversal between single-domain configurations of the magnetization. Here the transition (saddle) state can be either a single-domain or a spatially varying (instanton-like) configuration, and depending on the system parameters can exhibit either Arrhenius or non-Arrhenius reversal rates. We then turn to a discussion of transitions between magnetic textures, which can be either static and topologically protected or dynamic and not topologically protected. An example of the latter case is the droplet soliton, a rotating nontopologically-protected configuration, which we find can occur either as a metastable or transition state in a nanoscopic magnetic system. After discussing various issues in calculating transition rates, we present results for the activation barriers for creation and annihilation of these magnetic textures. We conclude with a discussion of activated transitions between topologically protected skyrmion textures and other configurations, on which work is ongoing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.