Using model catalysts with well-defined particle sizes and morphologies to elucidate questions regarding catalytic activity and stability has gained more interest, particularly utilizing colloidally prepared metal(oxide) particles. Here, colloidally synthesized iron oxide nanoparticles (Fe x O y -NPs, size ∼7 nm) on either a titania (Fe x O y /TiO2) or a silica (Fe x O y /SiO2) support were studied. These model catalyst systems showed excellent activity in the Fischer–Tropsch to olefin (FTO) reaction at high pressure. However, the Fe x O y /TiO2 catalyst deactivated more than the Fe x O y /SiO2 catalyst. After analyzing the used catalysts, it was evident that the Fe x O y -NP on titania had grown to 48 nm, while the Fe x O y -NP on silica was still 7 nm in size. STEM-EDX revealed that the growth of Fe x O y /TiO2 originated mainly from the hydrogen reduction step and only to a limited extent from catalysis. Quantitative STEM-EDX measurements indicated that at a reduction temperature of 350 °C, 80% of the initial iron had dispersed over and into the titania as iron species below imaging resolution. The Fe/Ti surface atomic ratios from XPS measurements indicated that the iron particles first spread over the support after a reduction temperature of 300 °C followed by iron oxide particle growth at 350 °C. Mössbauer spectroscopy showed that 70% of iron was present as Fe2+, specifically as amorphous iron titanates (FeTiO3), after reduction at 350 °C. The growth of iron nanoparticles on titania is hypothesized as an Ostwald ripening process where Fe2+ species diffuse over and through the titania support. Presynthesized nanoparticles on SiO2 displayed structural stability, as only ∼10% iron silicates were formed and particles kept the same size during in situ reduction, carburization, and FTO catalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.