We examined the extent to which training-related increases of inspiratory muscle (IM) strength are limited to the lung volume (VL) at which the training occurs. IM strength training consisted of performing repeated static maximum inspiratory maneuvers. Three groups of normal volunteers performed these maneuvers at one of three lung volumes: residual volume (RV), relaxation volume (Vrel), or Vrel plus one-half of inspiratory capacity (Vrel + 1/2IC). A control group did not train. We constructed maximal inspiratory pressure-VL curves before and after a 6-wk training period. For each group, we found that the greatest improvements in strength occurred at the volume at which the subjects trained and were significantly greater for those who trained at low (36% for RV and 26% for Vrel) than at high volumes (13% for Vrel + 1/2IC). Smaller increments in strength were noted at volumes adjacent to the training volume. The range of vital capacity (VC) over which strength was increased was greater for those who trained at low (70% of VC) than at high VL (20% of VC). We conclude that the greatest improvements in IM strength are specific to the VL at which training occurs. However, the increase in strength, as well as the range of volume over which strength is increased, is greater for those who trained at the lower VL.
The inspiratory muscles (IM) can be trained by having a subject breathe through inspiratory resistive loads or by use of unloaded hyperpnea. These disparate training protocols are characterized by high inspiratory pressure (force) or high inspiratory flow (velocity), respectively. We tested the hypothesis that the posttraining improvements in IM pressure or flow performance are specific to training protocols in a way that is similar to force-velocity specificity of skeletal muscle training. IM training was accomplished in 15 normal subjects by use of three protocols: high inspiratory pressure-no flow (group A, n = 5), low inspiratory pressure-high flow (group B, n = 5), and intermediate inspiratory pressure and flow (group C, n = 5). A control group (n = 4) did no training. Before and after training, we measured esophageal pressure (Pes) and inspiratory flow (VI) during single maximal inspiratory efforts against a range of external resistances including an occluded airway. Efforts originated below relaxation volume (Vrel), and peak Pes and VI were measured at Vrel. Isovolume maximal Pes-VI plots were constructed to assess maximal inspiratory pressure-flow performance. Group A (pressure training) performed 30 maximal static inspiratory maneuvers at Vrel daily, group B (flow training) performed 30 sets of three maximal inspiratory maneuvers with no added external resistance daily, and group C (intermediate training) performed 30 maximal inspiratory efforts on a midrange external resistance (7 mm ID) daily. Subjects trained 5 days/wk for 6 wk. Data analysis included comparison of posttraining Pes-VI slopes among training groups.(ABSTRACT TRUNCATED AT 250 WORDS)
Concerns about animal welfare and meat quality have encouraged research on new methods for the stunning of broilers during animal slaughter. In this study, the electroencephalogram (EEG) and electrocardiogram (ECG) of broilers were acquired during stunning using an electrical hybrid instead of a single frequency. Considering a square wave with a current of 220 mA and a frequency of 1100 Hz (duty-cycle 50%), the hybrid-frequency waveform is obtained generating pulses at 6600 Hertz in the pulse-width phase. Sixty broilers aged 42 days were randomly sampled; thirty were used for EEG measurement and thirty for ECG measurement. For EEG measurements, the birds' scalps were anesthetized, and EEG electrode needles were inserted on the subcutaneous part of the occipital scalp. For ECG, the non-invasive surface electrode was used. The electrodes were connected to a digital EEG/ECG system. The results showed that the hybrid-frequency waveform system generated epileptic forms in the birds' EEGs. Therefore, a hybrid-frequency system may present better carcass quality results, while preserving the birds' welfare, when compared with a single frequency system use. Keywords: poultry; unconsciousness; electrical stunning; animal welfare
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.