By developing quasi-discrete multiple-scale method combined with tight-binding approximation, a novel quadratic Riccati differential equation is first derived for the soliton dynamics of the condensed bosons trapped in the optical lattices. For a lack of exact solutions, the trial solutions of the Riccati equation have been analytically explored for the condensed bosons with various scattering length as. When the lattice depth is rather shallow, the results of sub-fundamental gap solitons are in qualitative agreement with the experimental observation. For the deeper lattice potentials, we predict that in the case of as>0, some novel intrinsically localized modes of symmetrical envelope, topological (kink) envelope, and anti-kink envelope solitons can be observed within the bandgap in the system, of which the amplitude increases with the increasing lattice spacing and (or) depth. In the case of as<0, the bandgap brings out intrinsically localized gray or black soliton. This well provides experimental protocols to realize transformation between the gray and black solitons by reducing light intensity of the laser beams forming optical lattice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.