Changes in apparent pH occurring during fast freezing of aqueous buffer solutions and cooling to -196 degrees C were studied by various semiquantitative methods, including simple visual measurements of colour changes with pH indicators, as well as measurements of pH-dependent changes in the e.p.r. (electron paramagnetic resonance) spectra of solutions of three different metalloenzymes. It is concluded that apparent pH changes of up to about 3pH units may occur under particular conditions. Such changes were independent of the time taken to freeze the samples, when this was varied from about 3ms t0 20s, but were affected by the presence of some proteins in solution. Recommendations on the buffers that should be used to avoid such apparent pH changes in e.p.r. spectroscopy and other low-temperature biochemical work are made. Phosphate and pyrophosphate buffers, which gave large decreases (2-3 pH units), and Tris, which under some conditions gave increases of about the same magnitude, are to be avoided. Certain zwitterionic buffers such as Bicine [NN-bis-(2-hydroxyethyl)glycine] are satisfactory. Apparent pH effects were found to depend on buffer and protein concentration. It is therefore recommended that as a prelude to future detailed low-temperature biochemical work, appropriate tests with an indicator system should be performed.
Singlet carbon atoms react with cyclic ethers to give carbon monoxide and diradical species. Cyclic thioethers react with singlet carbon atoms to give carbon monosulfide (CS) and diradicals. While both deoxygenation and desulfurization are facile processes, the deoxygenation reaction is more exothermic; this exothermic-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.