Radiation losses occurring in photonic crystals etched into planar waveguides are analyzed using a first-order perturbation approximation. Assuming the incoherent scattering limit, the model indicates that losses diminish as the cladding index approaches the core index. A simple scheme is devised to include these losses into purely two-dimensional calculations by using an imaginary index. Such calculations are shown to agree with corresponding experimental transmission through near-infrared photonic crystals, reproducing the contrasting behavior of the “dielectric” and “air” band edges.
Abstract-We describe experiments on a quasi-two-dimensional (2-D) optical system consisting of a triangular array of air cylinders etched through a laser-like Ga(Al)As waveguiding heterostructure. Such a configuration is shown to yield results very well approximated by the infinite 2-D photonic crystal (PC). We first present a set of measurements of the optical properties (transmission, reflection, and diffraction) of slabs of these photonic crystals, including the case of in-plane Fabry-Perot cavities formed between two such crystals. The measurement method makes use of the guided photoluminescence of embedded quantum wells or InAs quantum dots to generate an internal probe beam. Out-of-plane scattering losses are evaluated by various means. In a second part, in-plane micrometer-sized photonic boxes bounded by circular trenches or by two-dimensional photonic crystal are probed by exciting spontaneous emission inside them. The high quality factors observed in such photon boxes demonstrate the excellent photon confinement attainable in these systems and allow to access the detail of the modal structure. Last, some perspectives for applications are offered.
We present quantitative measurements of the interaction between a guided optical wave and a two-dimensional photonic crystal using spontaneous emission of the material as an internal point source. This is the first analysis at near-infrared wavelengths where transmission, reflection, and inplane diffraction are quantified at the same time. Low transmission coincides with high reflection or in-plane diffraction, indicating that the light remains guided upon interaction. Also, good qualitative agreement is found with a two-dimensional simulation based on the transfer matrix method. [S0031-9007(97)04591-2]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.