Red lesion identification at its early stage is very essential for the treatment of diabetic retinopathy to prevent loss of vision. This work proposes a red lesion detection algorithm that uses Hexagonal pattern-based features with two-level segmentation that can detect hemorrhage and microaneurysms in the fundus image. The proposed scheme initially pre-processes the fundus image followed by a two-level segmentation. The level 1 segmentation eliminates the background whereas the level 2 segmentation eliminates the blood vessels that introduce more false positives. A hexagonal pattern-based feature is extracted from the red lesion candidates which can highly differentiate the lesion from non-lesion regions. The hexagonal pattern features are then trained using the recurrent neural network and are classified to eliminate the false negatives. For the evaluation of the proposed red lesion algorithm, the datasets namely ROC challenge, e-ophtha, DiaretDB1, and Messidor are used with the metrics such as Accuracy, Recall, Precision, F1 score, Specificity, and AUC. The scheme provides an average Accuracy, Recall (Sensitivity), Precision, F1 score, Specificity, and AUC of 95.48 % , 84.54 % , 97.3 % , 90.47 % , 86.81 % and 93.43 % respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.