The present study shows that VitD may prevent endothelial cell death through modulation of the interplay between apoptosis and autophagy. This effect is obtained by inhibiting superoxide anion generation, maintaining mitochondria function and cell viability, activating survival kinases, and inducing NO production.
In addition to its calciotropic function, the secosteroid 1,25-dihydroxyvitamin D 3 (1,25(OH) 2 D 3 ), has potent anti-proliferative/immunomodulatory effects on various tissues. Consistently, the enzyme that catalyzes the synthesis of 1,25(OH) 2 D 3 , 1 -hydroxylase (1 -OHase) and the vitamin D receptor have a widespread tissue distribution. Among site-specific functions, the hormone has been suggested to be involved in uterine physiology. However, molecular analysis of the vitamin D system in normal endometrium throughout the menstrual cycle as well as its regulation in the context of endometrial physiological and pathological events have received very limited attention. Thus, we have studied expression, localization and regulation of 1 -OHase in human cycling and early pregnant endometrium. The capacity for 1 -hydroxylation and the presence of vitamin D receptor in endometrial cells have also been evaluated. The functional significance of these findings has been tested by evaluating gene expression of the catabolic enzyme, vitamin D 24-hydroxylase, and of the adhesion protein, osteopontin. Finally, to verify any potential dysfunction of the vitamin D system in endometriosis, a reproductive disease characterized by immune-mediated anomalies, we have analyzed expression of 1 -OHase in both eutopic and ectopic endometrium of affected patients. Results obtained showed that the active form of the 1 -OHase gene was expressed in human endometrial stromal cells independent of the cycle phase but with a significant increase in early pregnant decidua. A similar profile was observed for the protein, which was abundantly expressed in the cytoplasm of both endometrial stroma and epithelial glands. Both cycling and early pregnant endometrial cells also expressed the vitamin D receptor. In the same cells, 1 -OHase mRNA levels were significantly stimulated by the pro-inflammatory cytokine interleukin (IL)-1 (50 and 500 pg/ml) while addition of the active form of the hormone could modulate both CYP24 and osteopontin gene expression. The 1 -OHase gene was also expressed in ectopic endometrium and its levels were increased in proliferative phase cultures derived from patients with endometriosis. Human cycling endometrium may be included among the extrarenal sites able to synthesize vitamin D. The IL-1 −mediated induction of 1 -OHase gene and the hormonal modulation of osteopontin support a role for the hormone in the immunological mechanisms underlying uterine function. Abnormalities of this system are present in endometriosis.
Data from Alzheimer's disease (AD) patients and AD animal models demonstrate the accumulation of inflammatory microglia at sites of insoluble fibrillar beta-amyloid protein (fAbeta) deposition. It is known that fAbeta binds to CD36, a type B scavenger receptor also involved in internalization of oxidized low-density lipoprotein (LDL), and initiate a signaling cascade that regulates microglial recruitment, activation, and secretion of inflammatory mediators leading to neuronal dysfunction and death. The recent demonstration of a binding site for the growth hormone secretagogues (GHS) on CD36 prompted us to ascertain whether ghrelin and synthetic GHS could modulate the synthesis of inflammatory cytokines in fAbeta-activated microglia cells. We demonstrate that N9 microglia cells express the CD36 and are a suitable model to study the activation of inflammatory cytokines synthesis. In fact, in N9 cells exposed to fAbeta(25-35) for 24 hr, the expression of interleukin (IL)-1beta and IL-6 mRNA significantly increased. Interestingly, 10(-7) M desacyl-ghrelin, hexarelin, and EP80317 in the nanomolar range effectively counteracted fAbeta(25-35) stimulation of IL-6 mRNA levels, whereas ghrelin was ineffective. Similarly, the effects of fAbeta(25-35) on IL-1beta mRNA levels were attenuated by desacyl-ghrelin, hexarelin, and EP80317, but not ghrelin. Because we have observed that the specific GHS receptor GHS-R1a is not expressed in N9 cells, the actions of GHS should be mediated by different receptors. Reportedly, hexarelin and EP80317 are capable of binding the CD36 in mouse macrophages and reducing atherosclerotic plaque deposition in mice. We conclude that desacyl-ghrelin, hexarelin, and EP80317 might interfere with fAbeta activation of CD36 in microglia cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.