Magnetite, goethite, and lepidocrocite thin films have been electrochemically grown on titanium substrates by the anodic oxidation of ferrous ions in a 0.01 M FeSO 4 ͑NH 4 ͒ 2 SO 4 •6H 2 O + 0.04 M CH 3 COOK, pH 6.0, aqueous solution. It is demonstrated that the deposition potential can be used as a tool to tune the obtainment of the different pure phases of the iron oxide-oxyhydroxides thin films. Results of an exhaustive structural characterization, a morphological study, and X-ray photoelectron spectroscopy characterization are presented.
ZnO/CdS core/shell nanorod arrays were fabricated by a two-step method. Single-crystalline ZnO nanorod arrays were first electrochemically grown on SnO(2):F (FTO) glass substrates. Then, CdS nanocrystals were deposited onto the ZnO nanorods, using the successive ion layer adsorption and reaction (SILAR) technique, to form core/shell nanocable architectures. Structural, morphological and optical properties of the nanorod heterojunctions were investigated. The results indicate that CdS single-crystalline domains with a mean diameter of about 7 nm are uniformly and conformally covered on the surface of the single-crystalline ZnO nanorods. ZnO absorption with a bandgap energy value of 3.30 ± 0.02 eV is present in all optical transmittance spectra. Another absorption edge close to 500 nm corresponding to CdS with bandgap energy values between 2.43 and 2.59 eV is observed. The dispersion in this value may originate in quantum confinement inside the nanocrystalline material. The appearance of both edges corresponds with the separation of ZnO and CdS phases and reveals the absorption increase due to CdS sensitizer. The photovoltaic performance of the resulting ZnO/CdS core/shell nanorod arrays has been investigated as solar cell photoanodes in a photoelectrochemical cell under white illumination. In comparison with bare ZnO nanorod arrays, a 13-fold enhancement in photoactivity was observed using the ZnO/CdS coaxial heterostructures.
Electrodic surfaces of natural chalcopyrite and natural pyrite minerals (El Teniente mine, Chile) have been studied by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy including microanalysis (SEM/EDX). For comparison, fractured and polished mineral surfaces were also studied by XPS. In both electrodes, the formation of Fe(III) species containing oxygen were detected and Cu(II) species containing oxygen were additionally detected for chalcopyrite at advanced oxidation states. The presence of Cu(II) species containing oxygen was not detected by XPS for the initial oxidation states of the chalcopyrite. For pyrite, the present results do not allow confirmation of the presence of polysulfurs such as have been previously proposed. In both minerals, the measurements of SEM and EDX show relevant alterations in the respective surfaces when different potential values were applied. The chalcopyrite surface shows the formation of protrusions with a high concentration of oxygen. The pyrite surface shows a layer of modified material with high oxygen content. The modifications detected by XPS, SEM, and EDX allowed the explanation of the complexity of the equivalent circuit used to simulate the experimental EIS data. At high oxidation states, both minerals showed a pseudoinductive loop in the equivalent circuit, which was due to the active electrodissolution of the minerals which takes place through a surface film previously formed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.