Aims The objective of this study was to determine the effects of Ca‐dipicolinic acid (CaDPA), cortex‐lytic enzymes (CLEs), the inner membrane (IM) CaDPA channel and coat on spore killing by dodecylamine. Methods and Results Bacillus subtilis spores, wild‐type, CaDPA‐less due to the absence of DPA synthase or the IM CaDPA channel, or lacking CLEs, were dodecylamine‐treated and spore viability and vital staining were all determined. Dodecylamine killed intact wild‐type and CaDPA‐less B. subtilis spores similarly, and also killed intact Clostridiodes difficile spores ± CaDPA, with up to 99% killing with 1 mol l−1 dodecylamine in 4 h at 45°C with spores at ~108 ml−1. Dodecylamine killing of decoated wild type and CLE‐less B. subtilis spores was similar, but ~twofold faster than for intact spores, and much faster for decoated CaDPA‐less spores, with ≥99% killing in 5 min. Propidium iodide stained intact spores ± CaDPA minimally, decoated CaDPA‐replete spores or dodecylamine‐killed CLE‐less spores peripherally, and cores of decoated CaDPA‐less spores and dodecylamine‐killed intact spores with CLEs. The IM of some decoated CaDPA‐less spores was greatly reorganized. Conclusions Dodecylamine spore killing does not require CaDPA channels, CaDPA or CLEs. The lack of CaDPA in decoated spores allowed strong PI staining of the spore core, indicating loss of these spores IM permeability barrier. Significance and Impact of the Study This work gives new information on killing bacterial spores by dodecylamine, and how spore IM’s relative impermeability is maintained.
This study examined the microbicidal activity of 222-nm UV radiation (UV222), which is potentially a safer alternative to the 254-nm UV radiation (UV254) that is often used for surface decontamination. Spores and/or growing and stationary-phase cells of Bacillus cereus, Bacillus subtilis, Bacillus thuringiensis, Staphylococcus aureus, and Clostridioides difficile and a herpesvirus were all killed or inactivated by UV222 and at lower fluences than with UV254. B. subtilis spores and cells lacking the major DNA repair protein RecA were more sensitive to UV222, as were spores lacking their DNA-protective proteins, the α/β-type small, acid-soluble spore proteins. The spore cores’ large amount of Ca2+-dipicolinic acid (∼25% of the core dry weight) also protected B. subtilis and C. difficile spores against UV222, while spores’ proteinaceous coat may have given some slight protection against UV222. Survivors among B. subtilis spores treated with UV222 acquired a large number of mutations, and this radiation generated known mutagenic photoproducts in spore and cell DNA, primarily cyclobutane-type pyrimidine dimers in growing cells and an α-thyminyl-thymine adduct termed the spore photoproduct (SP) in spores. Notably, the loss of a key SP repair protein markedly decreased spore UV222 resistance. UV222-treated B. subtilis spores germinated relatively normally, and the generation of colonies from these germinated spores was not salt sensitive. The latter two findings suggest that UV222 does not kill spores by general protein damage, and thus, the new results are consistent with the notion that DNA damage is responsible for the killing of spores and cells by UV222. IMPORTANCE Spores of a variety of bacteria are resistant to common decontamination agents, and many of them are major causes of food spoilage and some serious human diseases, including anthrax caused by spores of Bacillus anthracis. Consequently, there is an ongoing need for efficient methods for spore eradication, in particular methods that have minimal deleterious effects on people or the environment. UV radiation at 254 nm (UV254) is sporicidal and commonly used for surface decontamination but can cause deleterious effects in humans. Recent work, however, suggests that 222-nm UV (UV222) may be less harmful to people than UV254 yet may still kill bacteria and at lower fluences than UV254. The present work has identified the damage by UV222 that leads to the killing of growing cells and spores of some bacteria, many of which are human pathogens, and UV222 also inactivates a herpesvirus.
The goal of nonuniform sampling (NUS) is to select a subset of free induction decays (FIDs) from the conventional, uniform grid in a manner that sufficiently samples short evolution times needed for improved sensitivity and long evolution times needed for enhanced resolution. In addition to specifying the number of FIDs to be collected from a uniform grid, NUS schemes also specify the distribution of the selected FIDs, which directly impacts sampling-induced artifacts. Sampling
Nonuniform sampling (NUS) strategies are developed for acquiring highly resolved 1,1‐ADEQUATE spectra, in both conventional and homodecoupled (HD) variants with improved sensitivity. Specifically, the quantile‐directed and Poisson gap methods were critically compared for distributing the samples nonuniformly, and the quantile schedules were further optimized for weighting. Both maximum entropy and iterative soft thresholding spectral estimation algorithms were evaluated. All NUS approaches were robust when the degree of data reduction is moderate, on the order of a 50% reduction of sampling points. Further sampling reduction by NUS is facilitated by using weighted schedules designed by the quantile method, which also suppresses sampling noise well. Seed independence and the ability to specify the sample weighting in quantile scheduling are important in optimizing NUS for 1,1‐ADEQUATE data acquisition. Using NUS yields an improvement in sensitivity, while also making longer evolution times accessible that would be difficult or impractical to attain by uniform sampling. Theoretical predictions for the sensitivity enhancements in these experiments are in the range of 5–20%; NUS is shown to disambiguate weak signals, reveal some nJCC correlations obscured by noise, and improve signal strength relative to uniform sampling in the same experimental time. This work presents sample schedule development for applying NUS to challenging experiments. The schedules developed here are made available for general use and should facilitate the broader utilization of ADEQUATE experiments (including 1,1‐, 1,n‐, and HD‐ variants) for challenging structure elucidation problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.