In this Letter, we report our recent experimental results on the energy gap of the ν=1 quantum Hall state (Δ(ν=1)) in a quantum antidot array sample, where the effective disorder potential can be tuned continuously. Δ(ν=1) is nearly constant at small effective disorders, and collapses at a critical disorder. Moreover, in the weak disorder regime, Δ(ν=1) shows a B(total)(1/2) dependence in tilted magnetic field measurements, while in the strong disorder regime, Δ(ν=1) is linear in B(total), where B(total) is the total magnetic field at ν=1. We discuss our results within several models involving the quantum Hall ferromagnetic ground state and its interplay with sample disorder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.