Bi2Te3-based thermoelectric materials with large thermoelectric figure of merit, ZT, at elevated temperatures are advantageous in power generation by using the low-grade waste heat. Here, we show that incorporation of small proportion (0.3 vol. %) of nanophase Cu2Se into BiSbTe matrix causes an enhanced high-temperature thermopower due to elevated energy filtering of carriers and inhibition of minority transport besides enhanced phonon blocking from scattering at interfaces, which concurrently result in an ∼20% increase in the power factor and an ∼60% reduction in the lattice thermal conductivity at 488 K. As a result, ZT = 1.6 is achieved at 488 K in the composite system with 0.3 vol. % of Cu2Se. Significantly, its ZT is larger than unit in broad high-temperature range (e.g., ZT = 1.3 at 400 K and ZT = 1.6 at 488 K), which makes this material to be attractive for applications in energy harvesting from the low-grade waste heat.
Recently, a single crystalline SnSe and its sodium doped compound are reported to have an ultralow thermal conductivity and a high thermoelectric figure of merit. However, the highest thermoelectric figure of merit for polycrystalline SnSe-based materials is not larger than 1. In this study, we report a high thermoelectric figure of merit 1.21 at 903 K for poly-crystalline SnSe, realized by incorporating a proper proportion of carbon black as nano-inclusions. The exceptional performance arises from the enhanced power factor, coming from an increased electrical conductivity at high temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.