Diamond is a material of interest due to its unique combination of properties, including its chemical inertness and biocompatibility. Polycrystalline diamond (poly-C) has been used in experimental biosensors that utilize electrochemical methods and antigen-antibody binding for the detection of biological molecules. Boron-doped poly-C electrodes have been found to be very advantageous for electrochemical applications due to their large potential window, low background current and noise, and low detection limits (as low as 500 fM). The biocompatibility of poly-C is found to be comparable, or superior to, other materials commonly used for implants, such as titanium and 316 stainless steel. We have developed a diamond-based, neural microelectrode-array (MEA), due to the desirability of poly-C as a biosensor. These diamond probes have been used for in vivo electrical recording and in vitro electrochemical detection. Poly-C electrodes have been used for electrical recording of neural activity. In vitro studies indicate that the diamond probe can detect norepinephrine at a 5 nM level. We propose a combination of diamond micro-machining and surface functionalization for manufacturing diamond pathogen-microsensors.
A comprehensive review is presented on the advances achieved in past years on fundamental and applied materials science of diamond films and engineering to integrate them into new generations of microelectromechanical system (MEMS) and nanoelectromechanical systems (NEMS). Specifically, the review focuses on describing the fundamental science performed to develop thin film synthesis processes and the characterization of chemical, mechanical, tribological and electronic properties of microcrystalline diamond, nanocrystalline diamond and ultrananocrystalline diamond films technologies, and the research and development focused on the integration of the diamond films with other film-based materials. The review includes both theoretical and experimental work focused on optimizing the films synthesis and the resulting properties to achieve the best possible MEMS/NEMS devices performance to produce new generation of MEMS/NEMS external environmental sensors and energy generation devices, human body implantable biosensors and energy generation devices, electron field emission devices and many more MEMS/NEMS devices, to produce transformational positive impact on the way and quality of life of people worldwide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.