Highly specific rabbit polyclonal antibodies for the obligate sugar-beet root parasite, Polymyxa betae, were produced using a novel recombinant DNA approach. Parasite cDNA was selectively isolated from infected roots, expressed in vitro, and the purified protein used to raise antibodies. This produced clean, precisely targeted antibodies, and allowed for rigorous screening of candidate genes and their products at the molecular level prior to animal immunization. This approach selects for genes whose products are highly expressed by the parasite in planta, and five such candidate genes from Polymyxa betae were identified and cloned. Polyclonal antiserum developed using the product of one such gene was found to react specifically with P. betae in sugar-beet roots and with the closely related Polymyxa graminis in barley roots, and to cross-react with Plasmodiophora brassicae in cabbage roots, without the need for further purification. No cross-reaction was detected with protein extracts from potato roots infected by the plasmodiophoromycete Spongospora subterranea. In all cases, there was no interaction with proteins from host plants, or from other microorganisms found in association with uninoculated sugar-beet, barley, cabbage and potato roots.
An ELISA test was developed for the quantitative detection of the obligate parasite Polymyxa betae , the vector of Beet necrotic yellow vein virus (BNYVV), in infected sugarbeet roots. The test used monoclonal and polyclonal antibodies raised to a recombinantly expressed glutathione-S-transferase (GST) from P. betae . A close correlation was found between the number of P. betae zoospores in serially diluted suspensions and absorbance values in the ELISA test. Timecourse studies of plants grown in naturally infested soils in controlled environment tests demonstrated the value of the ELISA test in screening for P. betae resistance. In preliminary tests, P. betae -resistant accessions of the wild sea beet ( Beta vulgaris ssp. maritima ), which might be used to restrict the transmission of BNYVV, were identified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.