An investigation into parameters affecting separation in normal shock wave/boundary layer interactions (SBLIs) has been conducted. It has been shown that the effective aspect ratio of an experimental facility (defined as δ * /tunnel width) is a critical factor in determining when shock-induced separation will occur. Experiments examining M ∞ = 1.4 and 1.5 normal shock waves in a wind tunnel with a small rectangular cross-section have been performed and show that a link exists between the extent of shock-induced separation on the tunnel centre-line and the size of corner-flow separations. In tests where the corner-flows were modified ahead of the shock (through suction and vortex generators), the extent of separation around the tunnel centre-line was seen to vary significantly. These observations are attributed to the way corner flows modify the three-dimensional shock-structure and the impact this has on the magnitude of the adverse pressure gradient experienced by the tunnel wall boundary layers.
Experiments are conducted to examine the mechanisms behind the coupling between corner separation and separation away from the corner when holding a high-Mach-number ${M}_{\infty } = 1. 5$ normal shock in a rectangular channel. The ensuing shock wave interaction with the boundary layer on the wind tunnel floor and in the corners was studied using laser Doppler anemometry, Pitot probe traverses, pressure sensitive paint and flow visualization. The primary mechanism explaining the link between the corner separation size and the other areas of separation appears to be the generation of compression waves at the corner, which act to smear the adverse pressure gradient imposed upon other parts of the flow. Experimental results indicate that the alteration of the $\lambda $-region, which occurs in the supersonic portion of the shock wave/boundary layer interaction (SBLI), is more important than the generation of any blockage in the subsonic region downstream of the shock wave.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.