The proposed electrical model of skin seems to be suitable for the detection and interpretation of changes in the impedance characteristics of skin induced by SLS in rabbits and humans.
Most of the distributed control strategies for gridconnected power converters are droop-based approaches composed of converters driven in voltage-control mode, based on local and shared data with adjacent units. They are usually combined with consensus protocols to deal with the trade-off between power sharing accuracy and voltage/frequency regulation. To achieve the desired results these control systems usually incorporate other techniques and need to take into account details of primary control dynamic. Additionally, power flow control and current unbalance compensation at the PCC are rarely addressed in such approaches. Contrariwise, the centralized control strategy power-based control has been successful in achieving these functionalities. It is oriented to a set point selection to the whole system, considering converters driven in current-control mode and a central converter in voltage-control mode. However, the dependence on centralized communication network in this method still requires improvement. Thereby, the complementary features of both strategies are combined herein in the consensus power-based control, based on a master/slave peerto-peer integration using sparse communication. This model-free approach provides all aforementioned benefits to the grid without any other technique. Implementation complexity and costs are decreased, while the flexibility and reliability are enhanced. All these achievements are demonstrated by simulation results under different operational conditions and compared to previous works.
Different control strategies for microgrid applications have been developed in the last decade. In order to enhance flexibility, scalability and reliability, special attention has been given to control organisations based on distributed communication infrastructures. Among these strategies, the implementation of consensus protocol stands out to cooperatively steer multi-agent systems (i.e., distributed generators), which is justified by its benefits, such as plug and play capability and enhanced resilience against communication failures. However, as the consensus protocol has a long trajectory of development in different areas of knowledge including multidisciplinary subjects, it may be a challenge to collect all the relevant information for its application in an emerging field. Therefore, the main goal of this paper is to provide the fundamentals of multi-agent systems and consensus protocol to the electrical engineering community, and an overview of its application to control systems for microgrids. The fundamentals of consensus protocol herein cover the concepts, formulations, steady-state and stability analysis for leaderless and leader-following consensus problems, in both continuous- and discrete-time. The overview of the applications summarises the main contributions achieved with this technique in the literature concerning microgrids, as well as the associated challenges and trends.
This paper describes the use of an electrical impedance model to assess acute skin reactions to irritant over time. The applied method is noninvasive and quantitative and can detect the irritation before the visual signs. The results showed that the signs of acute irritation (oedema) were present until the second day after irritant application. The method is able to detect the initial phase of irritation and the assessment of regeneration time could be attained by a combination of more than one bioengineering methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.