Context. Repeating fast radio bursts (FRBs) present excellent opportunities to identify FRB progenitors and host environments, as well as decipher the underlying emission mechanism. Detailed studies of repeating FRBs might also hold clues to the origin of FRBs as a population. Aims. We aim to detect bursts from the first two repeating FRBs: FRB 121102 (R1) and FRB 180814.J0422+73 (R2), and characterise their repeat statistics. We also want to significantly improve the sky localisation of R2 and identify its host galaxy. Methods. We use the Westerbork Synthesis Radio Telescope to conduct extensive follow-up of these two repeating FRBs. The new phased-array feed system, Apertif, allows covering the entire sky position uncertainty of R2 with fine spatial resolution in a single pointing. The data were searched for bursts around the known dispersion measures of the two sources. We characterise the energy distribution and the clustering of detected R1 bursts. Results. We detected 30 bursts from R1. The non-Poissonian nature is clearly evident from the burst arrival times, consistent with earlier claims. Our measurements indicate a dispersion measure of 563.5(2) pc cm −3 , suggesting a significant increase in DM over the past few years. Assuming a constant position angle across the burst, we place an upper limit of 8% on the linear polarisation fraction for the brightest burst in our sample. We did not detect any bursts from R2. Conclusions. A single power-law might not fit the R1 burst energy distribution across the full energy range or widely separated detections. Our observations provide improved constraints on the clustering of R1 bursts. Our stringent upper limits on the linear polarisation fraction imply a significant depolarisation, either intrinsic to the emission mechanism or caused by the intervening medium, at 1400 MHz that is not observed at higher frequencies. The non-detection of any bursts from R2, despite nearly 300 hrs of observations, implies either a highly clustered nature of the bursts, a steep spectral index, or a combination of both assuming the source is still active. Another possibility is that R2 has turned off completely, either permanently or for an extended period of time.
Our current understanding of galaxy evolution still has many uncertainties associated with the details of accretion, processing, and removal of gas across cosmic time. The next generation of radio telescopes will image the neutral hydrogen (HI) in galaxies over large volumes at high redshifts, which will provide key insights into these processes. We are conducting the COSMOS H I Large Extragalactic Survey (CHILES) with the Karl G. Jansky Very Large Array, which is the first survey to simultaneously observe H I from z = 0 to z ∼ 0.5. Here, we report the highest redshift H I 21-cm detection in emission to date of the luminous infrared galaxy (LIRG) COSMOS J100054.83+023126.2 at z=0.376 with the first 178 hours of CHILES data. The total H I mass is (2.9 ± 1.0) × 10 10 M , and the spatial distribution is asymmetric and extends beyond the galaxy. While optically the galaxy looks undisturbed, the H I distribution suggests an interaction with candidate a candidate companion. In addition, we present follow-up Large Millimeter Telescope CO observations that show it is rich in molecular hydrogen, with a range of possible masses of (1.8 − 9.9) × 10 10 M . This is the first study of the H I and CO in emission for a single galaxy beyond z ∼ 0.2.
We present new KAT-7 observations of the neutral hydrogen (H i) spectral line, and polarized radio continuum emission, in the grand design spiral M 83. These observations provide a sensitive probe of the outer disk structure and kinematics, revealing a vast and massive neutral gas distribution that appears to be tightly coupled to the interaction of the galaxy with the environment. We present a new rotation curve extending out to a radius of 50 kpc. Based on our new H i dataset and comparison with multiwavelength data from the literature we consider the impact of mergers on the outer disk and discuss the evolution of M 83. We also study the periphery of the H i distribution and reveal a sharp edge to the gaseous disk that is consistent with photoionization or ram pressure from the intergalactic medium (IGM). The radio continuum emission is not nearly as extended as the H i and is restricted to the main optical disk. Despite the relatively low angular resolution we are able to draw broad conclusions about the large-scale magnetic field topology. We show that the magnetic field of M 83 is similar in form to other nearby star forming galaxies, and suggest that the disk-halo interface may host a large-scale regular magnetic field.
We present HI observations of the Sculptor Group starburst spiral galaxy NGC 253, obtained with the Karoo Array Telescope (KAT-7). KAT-7 is a pathfinder for the SKA precursor MeerKAT, under construction. The short baselines and low system temperature of the telescope make it very sensitive to large scale, low surface brightness emission. The KAT-7 observations detected 33% more flux than previous VLA observations, mainly in the outer parts and in the halo for a total HI mass of 2.1 ± 0.1 ×10 9 M . HI can be found at large distances perpendicular to the plane out to projected distances of ∼9-10 kpc away from the nucleus and ∼13-14 kpc at the edge of the disk. A novel technique, based on interactive profile fitting, was used to separate the main disk gas from the anomalous (halo) gas. The rotation curve (RC) derived for the HI disk confirms that it is declining in the outer parts, as seen in previous optical Fabry-Perot measurements. As for the anomalous component, its RC has a very shallow gradient in the inner parts and turns over at the same radius as the disk, kinematically lagging by ∼100 km/sec. The kinematics of the observed extra planar gas is compatible with an outflow due to the central starburst and galactic fountains in the outer parts. However, the gas kinematics shows no evidence for inflow. Analysis of the near-IR WISE data, shows clearly that the star formation rate (SFR) is compatible with the starburst nature of NGC 253.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.