The theory of quasi-neutral equilibrium states of charges above liquid dielectric surface is built. This theory is based on first principles of quantum statistics for systems, comprising many identical particles. The proposed approach is concerned with applying the variational principle, modified for the considered systems, and the Thomas-Fermi model. In terms of the developed theory a self-consistency equations are obtained. These equations provide the relation between the main parameters, describing the system: the potential of static electric field, the distribution function of charges and the surface profile of liquid dielectric. The equations are used to study the phase transition in the system to a spatially periodic state. The proposed method can be applied to analyzing the properties of the phase transition in the system to a spatially periodic states of wave type. Using the analytical and numerical methods, we make a detailed research of the dependence of critical parameters of such phase transition on the thickness of liquid dielectric film. Some stability criteria of the new asymmetric phase of the studied system are discussed.
A theory of equilibrium states of electrons above a liquid helium surface in the presence of an external clamping field is built based on the first principles of quantum statistics for the system of many identical Fermi-particles. The approach is based on the variation principle modified for the considered system and on Thomas-Fermi model. In terms of the developed theory we obtain the self-consistency equations that connect the parameters of the system description, i.e., the potential of a static electric field, the distribution function of electrons and the surface profile of a liquid dielectric. The equations are used to study the phase transition of the system to a spatially periodic state. To demonstrate the capabilities of the proposed method, the characteristics of the phase transition of the system to a spatially periodic state of a trough type are analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.