Although skeletal muscle perfusion is fundamental to proper muscle function, in vivo measurements are typically limited to those of limb or arterial blood flow, rather than flow within the muscle bed itself. We present a noninvasive functional MRI (fMRI) technique for measuring perfusion-related signal intensity (SI) changes in human skeletal muscle during and after contractions and demonstrate its application to the question of occlusion during a range of contraction intensities. Eight healthy men (aged 20-31 yr) performed a series of isometric ankle dorsiflexor contractions from 10 to 100% maximal voluntary contraction. Axial gradient-echo echo-planar images (repetition time = 500 ms, echo time = 18.6 ms) were acquired continuously before, during, and following each 10-s contraction, with 4.5-min rest between contractions. Average SI in the dorsiflexor muscles was calculated for all 240 images in each contraction series. Postcontraction hyperemia for each force level was determined as peak change in SI after contraction, which was then scaled to that obtained following a 5-min cuff occlusion of the thigh (i.e., maximal hyperemia). A subset of subjects (n = 4) performed parallel studies using venous occlusion plethysmography to measure limb blood flow. Hyperemia measured by fMRI and plethysmography demonstrated good agreement. Postcontraction hyperemia measured by fMRI scaled with contraction intensity up to approximately 60% maximal voluntary contraction. fMRI provides a noninvasive means of quantifying perfusion-related changes during and following skeletal muscle contractions in humans. Temporal changes in perfusion can be observed, as can the heterogeneity of perfusion across the muscle bed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.