The submitled manuscript has been created by the Univmity of chicago as Operator of Argonne National Laboratory US. Department of Energy. The U.S. Government retains for itseil, and others acting (
AbstractThis paper summarizes and discusses the results of work, published over the past 25 years, that is pertinent to the problem of understanding the factors influencing the dynamic stability of repulsive-force maglev suspension systems.
Because dynamic instabilities are not acceptable in any commercial maglev system, it is important to consider dynamic instability in the development of all maglev systems. This study considers the stability of maglev systems based on experimental data, scoping calculations, and simple mathematical models. Divergence and flutter are obtained for coupled vibration of a three-degree-of-freedom maglev vehicle on a guideway consisting of double L-shaped aluminum segments. The theory and analysis developed in this study provides basic stability characteristics and identifies future research needs for maglev systems.
This report presents the results of a study of the Japanese MLU magneticlevitation (maglev) system. The development of the MLU system is reviewed, and the dynamic circuit model then is introduced and applied to the figure-eight-shaped null-flux coil suspension system. Three different types of figure-eight-shaped nullflux suspension systems are discussed in detail: (1) the figure-eight-shaped nullflux coil suspension system without cross-connection; (2) the combined suspension and guidance system; and (3) the combined propulsion, levitation, and guidance system. The electrodynamic-suspension maglev systems developed in Japan seem to be very promising and could result in a commercial application in the near future.
Magnetic damping is one of the important parameters that control the response and stability of maglev systems. An experimental study to measure magnetic damping directly is presented. A plate attached to a permanent magnet levitated on a rotating drum was tested to investigate the effect of various parameters, such as conductivity, gap, excitation frequency, and oscillation amplitude, on magnetic damping. The experimental technique is capable of measuring all of the magnetic damping coefficients, some of which cannot be measured indirectly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.