We also mis-reported the temperature of the silicate and carbon grains in our fit to the HR 7012 IRS spectrum; the grains have a temperature 550 K, not 520 K as reported previously. Lastly, the composition of the enstatite used to fit the HR 7012 spectrum is Mg 0.7 Fe 0.3 SiO 3 , not Mg 0.7 Fe 0.3 SiO 4 . In addition, we noticed an error in the minimum blow-out size for silicate, carbon, and silica grains around HD 113766 and HR 7012; the blow-out sizes are smaller than previously estimated. For HD 113766, we originally estimated minimum silicate and carbon sizes of 1.4 and 1.9 m, respectively; we now estimate 0.35 and 0.46 m, respectively. With the exception of forsterite, all of the grains used to model the HD 113766 spectrum are larger than the minimum grain sizes. The forsterite grains (submicron) possess radii that are similar to the minimum silicate grain size. For HR 7012, we originally estimated minimum silicate, carbon, and silica sizes of 1.1, 1.4, and 1.6 m, respectively; we now estimate 0.9, 1.2, and 1.3 m, respectively. The enstatite and cristobalite grains used to model the infrared HR 7012 spectrum are still smaller than the minimum grain size. We had previously concluded that the minimum grain sizes (>1 m) were inconsistent with presence of submicron-sized grains inferred from the structure of the silicate emission features, suggesting that a recent massive collision must have occurred around HD 113766 and HR 7012. Our new minimum grain size estimates are more consistent with our models for the infrared spectra and do not require a recent massive collision around HD 113766. However, our models do indicate the presence of submicron-sized particles significantly smaller than the blow-out size around HR 7012, suggesting that a recent massive collision may have occurred in this system.
We have conducted a survey of 328 protostars in the Orion molecular clouds with the Atacama Large Millimeter/ submillimeter Array at 0.87 mm at a resolution of ∼0 1 (40 au), including observations with the Very Large Array at 9mm toward 148 protostars at a resolution of ∼0 08 (32 au). This is the largest multiwavelength survey of protostars at this resolution by an order of magnitude. We use the dust continuum emission at 0.87 and 9mm to measure the dust disk radii and masses toward the Class 0, Class I, and flat-spectrum protostars, characterizing the evolution of these disk properties in the protostellar phase. The mean dust disk radii for the Class 0, Class I, and flat-spectrum protostars are -+ 44.9 3.4 5.8 , -+ 37.0 3.0 4.9 , and -+ 28.5 2.3 3.7 au, respectively, and the mean protostellar dust disk masses are 25.9 -+ 4.0 7.7 , -+ 14.9 2.2 3.8 , -+11.6 1.93.5 Å M , respectively. The decrease in dust disk masses is expected from disk evolution and accretion, but the decrease in disk radii may point to the initial conditions of star formation not leading to the systematic growth of disk radii or that radial drift is keeping the dust disk sizes small. At least 146 protostellar disks (35% of 379 detected 0.87 mm continuum sources plus 42 nondetections) have disk radii greater than 50 au in our sample. These properties are not found to vary significantly between different regions within Orion. The protostellar dust disk mass distributions are systematically larger than those of Class II disks by a factor of >4, providing evidence that the cores of giant planets may need to at least begin their formation during the protostellar phase.
We present ALMA (0.87 mm) and VLA (9 mm) observations toward OMC2-FIR4 and OMC2-FIR3 within the Orion integral-shaped filament that are thought to be the nearest regions of intermediate mass star formation. We characterize the continuum sources within these regions on ∼40 AU (0. 1) scales and associated molecular line emission at a factor of ∼30 better resolution than previous observations at similar wavelengths. We identify six compact continuum sources within OMC2-FIR4, four in OMC2-FIR3, and one additional source just outside OMC2-FIR4. This continuum emission is tracing the inner envelope and/or disk emission on less than 100 AU scales. HOPS-108 is the only protostar in OMC2-FIR4 that exhibits emission from high-excitation transitions of complex organic molecules (e.g., methanol and other lines) coincident with the continuum emission. HOPS-370 in OMC2-FIR3 with L ∼ 360 L , also exhibits emission from high-excitation methanol and other lines. The methanol emission toward these two protostars is indicative of temperatures high enough to thermally evaporate methanol from icy dust grains; overall these protostars have characteristics similar to hot corinos. We do not identify a clear outflow from HOPS-108 in 12 CO, but find evidence of interaction between the
We study protostellar envelope and outflow evolution using Hubble Space Telescope NICMOS or WFC3 images of 304 protostars in the Orion molecular clouds. These near-IR images resolve structures in the envelopes delineated by the scattered light of the central protostars with 80 au resolution, and they complement the 1.2 μm to 870 μm spectral energy distributions (SEDs) obtained with the Herschel Orion Protostar Survey program. Based on their 1.60 μm morphologies, we classify the protostars into five categories: nondetections, point sources without nebulosity, bipolar cavity sources, unipolar cavity sources, and irregulars. We find point sources without associated nebulosity are the most numerous, and show through monochromatic Monte Carlo radiative transfer modeling that this morphology occurs when protostars are observed at low inclinations or have low envelope densities. We also find that the morphology is correlated with the SED-determined evolutionary class, with Class 0 protostars more likely to be nondetections, Class I protostars to show cavities, and flat-spectrum protostars to be point sources. Using an edge detection algorithm to trace the projected edges of the cavities, we fit power laws to the resulting cavity shapes, thereby measuring the cavity half-opening angles and power-law exponents. We find no evidence for the growth of outflow cavities as protostars evolve through the Class I protostar phase, in contradiction with previous studies of smaller samples. We conclude that the decline of mass infall with time cannot be explained by the progressive clearing of envelopes by growing outflow cavities. Furthermore, the low star formation efficiency inferred for molecular cores cannot be explained by envelope clearing alone.
Normal field stars located behind dense clouds are a valuable resource in interstellar astrophysics, as they provide continua in which to study phenomena such as gas-phase and solid-state absorption features, interstellar extinction, and polarization. This paper reports the results of a search for highly reddened stars behind the Taurus Dark Cloud complex. We use the Two Micron All Sky Survey (2MASS) Point Source Catalog to survey a $50 deg 2 area of the cloud to a limiting magnitude of K s ¼ 10:0. Photometry in the 1.2Y2.2 m passbands from 2MASS is combined with photometry at longer infrared wavelengths (3.6 Y12 m) from the Spitzer Space Telescope and the Infrared Astronomical Satellite to provide effective discrimination between reddened field stars and young stellar objects (YSOs) embedded in the cloud. Our final catalog contains 248 confirmed or probable background field stars, together with estimates of their total visual extinctions, which span the range 2 < A V < 29 mag. We also identify the 2MASS source J04292083+2742074 (IRAS 04262+2735) as a previously unrecognized candidate YSO, based on the presence of infrared emission greatly in excess of that predicted for a normal reddened photosphere at wavelengths >5 m.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.