We study protostellar envelope and outflow evolution using Hubble Space Telescope NICMOS or WFC3 images of 304 protostars in the Orion molecular clouds. These near-IR images resolve structures in the envelopes delineated by the scattered light of the central protostars with 80 au resolution, and they complement the 1.2 μm to 870 μm spectral energy distributions (SEDs) obtained with the Herschel Orion Protostar Survey program. Based on their 1.60 μm morphologies, we classify the protostars into five categories: nondetections, point sources without nebulosity, bipolar cavity sources, unipolar cavity sources, and irregulars. We find point sources without associated nebulosity are the most numerous, and show through monochromatic Monte Carlo radiative transfer modeling that this morphology occurs when protostars are observed at low inclinations or have low envelope densities. We also find that the morphology is correlated with the SED-determined evolutionary class, with Class 0 protostars more likely to be nondetections, Class I protostars to show cavities, and flat-spectrum protostars to be point sources. Using an edge detection algorithm to trace the projected edges of the cavities, we fit power laws to the resulting cavity shapes, thereby measuring the cavity half-opening angles and power-law exponents. We find no evidence for the growth of outflow cavities as protostars evolve through the Class I protostar phase, in contradiction with previous studies of smaller samples. We conclude that the decline of mass infall with time cannot be explained by the progressive clearing of envelopes by growing outflow cavities. Furthermore, the low star formation efficiency inferred for molecular cores cannot be explained by envelope clearing alone.
We present initial results from JWST NIRSpec integral field unit observations of the nearby supernova SN 1987A. The observations provide the first spatially resolved spectroscopy of the ejecta and equatorial ring (ER) over the 1–5 μm range. We construct 3D emissivity maps of the [Fe i] 1.443 μm line from the inner ejecta and the He i 1.083 μm line from the reverse shock (RS), where the former probes the explosion geometry and the latter traces the structure of the circumstellar medium. We also present a model for the integrated spectrum of the ejecta. The [Fe i] 3D map reveals a highly asymmetric morphology resembling a broken dipole, dominated by two large clumps with velocities of ∼2300 km s−1. We also find evidence that the Fe-rich inner ejecta have started to interact with the RS. The RS surface traced by the He i line extends from just inside the ER to higher latitudes on both sides of the ER with a half-opening angle ∼45°, forming a bubble-like structure. The spectral model for the ejecta allows us to identify the many emission lines, including numerous H2 lines. We find that the H2 is most likely excited by far-UV emission, while the metal-line ratios are consistent with a combination of collisional excitation and recombination in the low-temperature ejecta. We also find several high-ionization coronal lines from the ER, requiring a temperature ≳2 × 106 K.
At least half of a protostar’s mass is accreted in the Class 0 phase, when the central protostar is deeply embedded in a dense, infalling envelope. We present the first systematic search for outbursts from Class 0 protostars in the Orion clouds. Using photometry from Spitzer/IRAC spanning 2004 to 2017, we detect three outbursts from Class 0 protostars with ≥2 mag changes at 3.6 or 4.5 μm. This is comparable to the magnitude change of a known protostellar FU Ori outburst. Two are newly detected bursts from the protostars HOPS 12 and 124. The number of detections implies that Class 0 protostars burst every 438 yr, with a 95% confidence interval of 161 to 1884 yr. Combining Spitzer and WISE/NEOWISE data spanning 2004–2019, we show that the bursts persist for more than nine years with significant variability during each burst. Finally, we use 19–100 μm photometry from SOFIA, Spitzer, and Herschel to measure the amplitudes of the bursts. Based on the burst interval, a duration of 15 yr, and the range of observed amplitudes, 3%–100% of the mass accretion during the Class 0 phase occurs during bursts. In total, we show that bursts from Class 0 protostars are as frequent, or even more frequent, than those from more evolved protostars. This is consistent with bursts being driven by instabilities in disks triggered by rapid mass infall. Furthermore, we find that bursts may be a significant, if not dominant, mode of mass accretion during the Class 0 phase.
The X-ray binary 4U 1954+31 has been classified as a low-mass X-ray binary containing an M giant and a neutron star (NS). It has also been included in the rare class of X-ray symbiotic binaries. The Gaia parallax, infrared colors, spectral type, abundances, and orbital properties of the M star demonstrate that the cool star in this system is not a low-mass giant but a high-mass M supergiant. Thus, 4U 1954+31 is a high-mass X-ray binary (HMXB) containing a late-type supergiant. It is the only known binary system of this type. The mass of the M I is M ⊙ giving an age of this system in the range 12–50 Myr with the NS no more than 43 Myr old. The spin period of the NS is one of the longest known, 5 hr. The existence of M I plus NS binary systems is in accord with stellar evolution theory, with this system a more evolved member of the HMXB population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.