In Dirac's canonical quantization theory on systems with second-class constraints, the commutators between the position, momentum and Hamiltonian form a set of algebraic relations that are fundamental in construction of both the quantum momentum and the Hamiltonian. For a free particle on a two-dimensional sphere or a spherical top, results show that the well-known canonical momentum p θ breaks one of the relations, while three components of the momentum expressed in the three-dimensional Cartesian system of axes as p i (i = 1, 2, 3) are satisfactory all around. This momentum is not only geometrically invariant but also self-adjoint, and we call it geometric momentum. The nontrivial commutators between p i generate three components of the orbital angular momentum; thus the geometric momentum is fundamental to the angular one. We note that there are five different forms of the geometric momentum proposed in the current literature, but only one of them turns out to be meaningful.
A generalization of the Dirac's canonical quantization theory for a system with second-class constraints is proposed as the fundamental commutation relations that are constituted by all commutators between positions, momenta and Hamiltonian so they are simultaneously quantized in a self-consistent manner, rather than by those between merely positions and momenta so the theory either contains redundant freedoms or conflicts with experiments. The application of the generalized theory to quantum motion on a torus leads to two remarkable results: i) The theory formulated purely on the torus, i.e., based on the so-called the purely intrinsic geometry, conflicts with itself. So it provides an explanation why an intrinsic examination of quantum motion on torus within the Schrödinger formalism is improper. ii) An extrinsic examination of the torus as a submanifold in three dimensional flat space turns out to be self-consistent and the resultant momenta and Hamiltonian are satisfactory all around.
For a non-relativistic particle that freely moves on a curved surface, the fundamental commutation relations between positions and momenta are insufficient to uniquely determine the operator form of the momenta. With introduction of more commutation relations between positions and Hamiltonian and those between momenta and Hamiltonian, our recent sequential studies imply that the Cartesian system of coordinates is physically preferable, consistent with Dirac's observation. In present paper, we study quantization problem of the motion constrained on the two-dimensional sphere and develop a discriminant that can be used to show how the quantization within the intrinsic geometry is improper. Two kinds of parameterization of the spherical surface are explicitly invoked to investigate the quantization problem within the intrinsic geometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.