We are developing a collapsible, percutaneously inserted, axial flow blood pump to support the cavopulmonary circulation in infants with a failing single ventricle physiology. An initial design of the impeller for this axial flow blood pump was performed using computational fluid dynamics analysis, including pressure-flow characteristics, scalar stress estimations, blood damage indices, and fluid force predictions. A plastic prototype was constructed for hydraulic performance testing, and these experimental results were compared with the numerical predictions. The numerical predictions and experimental findings of the pump performance demonstrated a pressure generation of 2-16 mm Hg for 50-750 ml/min over 5,500-7,500 RPM with deviation found at lower rotational speeds. The axial fluid forces remained below 0.1 N, and the radial fluid forces were determined to be virtually zero due to the centered impeller case. The scalar stress levels remained below 250 Pa for all operating conditions. Blood damage analysis yielded a mean residence time of the released particles, which was found to be less than 0.4 seconds for both flow rates that were examined, and a maximum residence time was determined to be less than 0.8 seconds. We are in the process of designing a cage with hydrodynamically shaped filament blades to act as a diffuser and optimizing the impeller blade shape to reduce the flow vorticity at the pump outlet. This blood pump will improve the clinical treatment of patients with failing Fontan physiology and provide a unique catheter-based therapeutic approach as a bridge to recovery or transplantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.