A bidimensional cellular automaton model is used to simulate the process of evacuation of pedestrians in a room with fixed obstacles. A floor field is defined so that moving to a cell with lower floor field means approaching an exit door. The model becomes non-deterministic by introducing a ''panic'' parameter, given by a probability of not moving, and by a random choice to resolve conflicts in the update of pedestrian positions. Two types of exit doors are considered: single (where only one person can pass) and double (two persons can pass simultaneously). For a double door, the longest evacuation time turns out to occur for a very traditional location of the door. The optimum door position is determined. Replacing the double door by two single doors does not improve evacuation times noticeably. On the other hand, for a room without obstacles, a simple scaling law is proposed to model the dependence of evacuation time with the number of persons and exit width. This model fails when obstacles are present, as their presence introduces local bottlenecks whose effect outweighs the benefits of increasing door width beyond a certain threshold. r
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.