A novel method for the spatial discretization of two-dimensional domains is derived and applied to the problem of free vibrations of singly curved shells. This new method utilizes a tensor product of two independent families of lines to discretize the geometry and kinematics of a surface. The first family consists of NURBS functions which are implemented in agreement with the isogeometric approach. The second family of lines is a carefully selected series which satisfies boundary conditions a priori. The present hybrid formulation unifies spatial discretization schemes of the semi-analytical Finite strip method and the Isogeometric analysis. The obtained method inherits many features of both of the underlying techniques, e.g., high continuity in both directions, decoupling of the governing equations, and exact initial geometry. Thorough numerical analysis shows that this novel method is well-suited for the efficient and accurate free vibration analysis of singly curved thin shells.
UVODPrave grede su najčešće korišćeni elementi konstrukcija, prije svega zbog dostupnosti, jednostavnosti i višestruke primjenljivosti. Shodno tome, najrazvijenije i najutemeljenije grane mehanike kontinuuma jesu upravo gredne teorije. Iako su mnogi aspekti ponašanja ovih elemenata dobro proučeni, analiza greda i dalje privlači pažnju istraživača čiji je cilj njihovo pojednostavljenje i unapređivanje. Jedna od najinteresantnijih oblasti istraživanja jeste nelinearna dinamička analiza grednih konstrukcija. Odgovarajuće modeliranje ovakvog ponašanja od presudnog je značaja u savremenom građevinarstvu, s obzirom na to što su moderne konstrukcije vitke i osjetljive na dinamičke uticaje. Prilikom analiza koje razmatraju slučajeve s velikim pomjeranjima i deformacijama, nelinearni efekti moraju se uzeti u obzir. Matrica krutosti više nije jednaka samo linearnoj, tj. materijalnoj, već se moraju uzeti u obzir i efekti početnih pomjeranja i početnih napona. Kao posljedica izmjene krutosti, mijenjaju se i svojstvene frekvencije i svojstveni oblici vibracija konstrukcije.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.