Spectral lines are among the most powerful signatures for dark matter (DM) annihilation searches in very-high-energy γ rays. The central region of the Milky Way halo is one of the most promising targets given its large amount of DM and proximity to Earth. We report on a search for a monoenergetic spectral line from self-annihilations of DM particles in the energy range from 300 GeV to 70 TeV using a twodimensional maximum likelihood method taking advantage of both the spectral and spatial features of the signal versus background. The analysis makes use of Galactic center observations accumulated over ten years (2004)(2005)(2006)(2007)(2008)(2009)(2010)(2011)(2012)(2013)(2014) with the H.E.S.S. array of ground-based Cherenkov telescopes. No significant γ-ray excess above the background is found. We derive upper limits on the annihilation cross section hσvi for monoenergetic DM lines at the level of 4 × 10 −28 cm 3 s −1 at 1 TeV, assuming an Einasto DM profile for the Milky Way halo. For a DM mass of 1 TeV, they improve over the previous ones by a factor of 6. The present constraints are the strongest obtained so far for DM particles in the mass range 300 GeV-70 TeV. Groundbased γ-ray observations have reached sufficient sensitivity to explore relevant velocity-averaged cross sections for DM annihilation into two γ-ray photons at the level expected from the thermal relic density for TeV DM particles.
PSR B1259-63 is a gamma-ray binary system hosting a radio pulsar orbiting around a O9.5Ve star, LS 2883, with a period of ∼3.4 years. The interaction of the pulsar wind with the LS 2883 outflow leads to unpulsed broadband emission in the radio, X-ray, GeV, and TeV domains. One of the most unusual features of the system is an outburst of GeV energies around the periastron, during which the energy release substantially exceeds the spin down luminosity under the assumption of the isotropic emission. In this paper, we present the first results of a recent multi-wavelength campaign (radio, optical, and X-ray bands) accompanied by the analysis of publicly available GeV Fermi/LAT data. The campaign covered a period of more than 100 days around the 2021 periastron and revealed substantial differences from previously observed passages. We report a major delay of the GeV flare, weaker X-ray flux during the peaks, which are typically attributed to the times when the pulsar crosses the disk, and the appearance of a third X-ray peak never observed before. We argue that these features are consistent with the emission cone model proposed by us previously, in the case of a sparser and clumpier disk of the Be star.
Since 1996 the blast wave driven by SN 1987A has been interacting with the dense circumstellar material, which provides us with a unique opportunity to study the early evolution of a newborn supernova remnant (SNR). Based on the XMM-Newton RGS and EPIC-pn X-ray observations from 2007 to 2019, we investigated the post-impact evolution of the X-ray-emitting gas in SNR 1987A. The hot plasma is represented by two nonequilibrium ionization components with temperatures of ∼0.6 keV and ∼2.5 keV. The low-temperature plasma has a density ∼2400 cm−3, which is likely dominated by the lower-density gas inside the equatorial ring (ER). The high-temperature plasma with a density ∼550 cm−3 could be dominated by the H ii region and the high-latitude material beyond the ring. In the last few years, the emission measure of the low-temperature plasma has been decreasing, indicating that the blast wave has left the main ER. But the blast wave is still propagating into the high-latitude gas, resulting in the steady increase of the high-temperature emission measure. Meanwhile, the average abundances of N, O, Ne, and Mg are found to be declining, which may reflect the different chemical compositions between the two plasma components. We also detected Fe K lines in most of the observations, showing increasing flux and centroid energy. We interpret the Fe K lines as originating from a third hot component, which may come from the reflected shock heated gas or originate from Fe-rich ejecta clumps shocked by the reverse shock.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.