Action prediction plays a key function, where an expected action needs to be identified before the action is completely performed. Prediction means inferring a potential action until it occurs at its early stage. This paper emphasizes on early action prediction, to predict an action before it occurs. In real time scenarios, the early prediction can be very crucial and has many applications like automated driving system, healthcare, video surveillance and other scenarios where a proactive action is needed before the situation goes out of control. VGG16 model is used for the early action prediction which is a convolutional neural network with 16 layers depth. Besides its capability of classifying objects in the frames, the availability of model weights enhances its capability. The model weights are available freely and preferred to used in different applications or models. The VGG-16 model along with Bidirectional structure of Lstm enables the network to provide both backward and forward information at every time step. The results of the proposed approach increased observation ratio ranging from 0.1 to 1.0 compared with the accuracy of GAN model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.