Host plant resistance is an important component for minimizing the losses due to the pod borer, Helicoverpa armigera, which is the most devastating pest of pigeonpea. An understanding of different morphological and biochemical components of resistance is essential for developing strategies to breed for resistance to insect pests. Therefore, we studied the morphological and biochemical components associated with expression of resistance to H. armigera in wild relatives of pigeonpea to identify accessions with a diverse combination of characteristics associated with resistance to this pest. Among the wild relatives, oviposition non-preference was an important component of resistance in Cajanus scarabaeoides, while heavy egg-laying was recorded on C. cajanifolius (ICPW 28) and Rhynchosia bracteata (ICPW 214). Accessions belonging to R. aurea, C. scarabaeoides, C. sericeus, C. acutifolius, and Flemingia bracteata showed high levels of resistance to H. armigera, while C. cajanifolius was as susceptible as the susceptible check, ICPL 87. Glandular trichomes (type A) on the calyxes and pods were associated with susceptibility to H. armigera, while the non-glandular trichomes (trichome type C and D) were associated with resistance to this insect. Expression of resistance to H. armigera was also associated with low amounts of sugars and high amounts of tannins and polyphenols.Accessions of wild relatives of pigeonpea with non-glandular trichomes (type C and D) or low densities of glandular trichomes (type A), and high amounts of polyphenols and tannins may be used in wide hybridization to develop pigeonpea cultivars with resistance to H. armigera.
Drought, one of the environmental stresses, plays crucial role in reduction in plant production on majority of agricultural fields of world, In order to evaluate drought stress on RNA content Relative water content (RWC), and chlorophyll content, Water deficit was induced by Polyethylene glycol (PEG) in peanut (), accession number ICGV 91114. In this current study we evaluate RNA content and Relative water content (RWC) both in leaves and roots and chlorophyll content in leaf. The present study was undertaken with the aim to investigate the effect of water deficit imposed by PEG-6000, 40 old day seedlings were treated with varying concentrations of polyethylene glycol-6000 (PEG-6000; w/v-5%, 10%, 15% & 20%) for 24 h. The results showed that RNA content and Relative water content (RWC) content was significantly reduced in both leaves and roots with increased concentration of PEG, In leaves, a concentration dependent decline in chlorophyll content with increasing concentration of polyethylene glycol-6000 (PEG-6000). Reduction in chlorophyll '' level was to a greater extent than the chlorophyll ''. Thus, this attributes can be used as screening tool for drought tolerance in peanut.
Late embryogenesis abundant (LEA) proteins, the space fillers or molecular shields, are the hydrophilic protective proteins which play an important role during plant development and abiotic stress. The systematic survey and characterization revealed a total of 68 LEA genes, belonging to 8 families in Sorghum bicolor. The LEA-2, a typical hydrophobic family is the most abundant family. All of them are evenly distributed on all 10 chromosomes and chromosomes 1, 2, and 3 appear to be the hot spots. Majority of the S. bicolor LEA (SbLEA) genes are intron less or have fewer introns. A total of 22 paralogous events were observed and majority of them appear to be segmental duplications. Segmental duplication played an important role in SbLEA-2 family expansion. A total of 12 orthologs were observed with Arabidopsis and 13 with Oryza sativa. Majority of them are basic in nature, and targeted by chloroplast subcellular localization. Fifteen miRNAs targeted to 25 SbLEAs appear to participate in development, as well as in abiotic stress tolerance. Promoter analysis revealed the presence of abiotic stress-responsive DRE, MYB, MYC, and GT1, biotic stress-responsive W-Box, hormone-responsive ABA, ERE, and TGA, and development-responsive SKn cis-elements. This reveals that LEA proteins play a vital role during stress tolerance and developmental processes. Using microarray data, 65 SbLEA genes were analyzed in different tissues (roots, pith, rind, internode, shoot, and leaf) which show clear tissue specific expression. qRT-PCR analysis of 23 SbLEA genes revealed their abundant expression in various tissues like roots, stems and leaves. Higher expression was noticed in stems compared to roots and leaves. Majority of the SbLEA family members were up-regulated at least in one tissue under different stress conditions. The SbLEA3-2 is the regulator, which showed abundant expression under diverse stress conditions. Present study provides new insights into the formation of LEAs in S. bicolor and to understand their role in developmental processes under stress conditions, which may be a valuable source for future research.
Sorghum downy mildew (SDM), caused by Peronosclerospora sorghi Weston and Uppal (Shaw), is a serious disease of sorghum [Sorghum bicolor (L.) Moench] and maize (Zea mays L.). The wild relatives of sorghum, both cross compatible and cross incompatible with S. bicolor, could provide alternate sources of resistance genes for the long‐term control of SDM. The objective of this study was to assess the downy mildew reaction of several taxa of wild and weedy sorghums. One hundred three wild and weedy sorghums, and six cultivated types belonging to five sections, representing 17 species, originating from Asia, Australia, Africa, and the USA, were greenhouse tested for downy mildew resistance during the rainy seasons of 1998 and 1999 at ICRISAT, Patancheru, India. Forty‐five accessions comprising 15 species from four sections, parasorghum, heterosorghum (S. laxiflorum Bailey), chaetosorghum (S. macrospermum Garber), and stiposorghum (S. angustum S. T. Blake, S. ecarinatum Lazarides, S. extans Lazarides, S. intrans F. Muell. ex Benth., S. interjectum Lazarides, S. stipoideum (Ewart & Jean White) C. Gardener & C. E. Hubb.), including all accessions from Australia, exhibited immunity to downy mildew. Cultivated types and wild races of section Sorghum showed the greatest susceptibility (mean downy mildew infection of 62 and 46%, respectively), while accessions of S. halepense (L.) Pers. were comparatively less susceptible (36% mean downy mildew infection). Potential new sources of resistance genes from wild and weedy sorghums were identified that could be used to develop resistant cultivars to control downy mildew.
A genome-wide scanning of Sorghum bicolor resulted in the identification of 25 SbHsf genes. Phylogenetic analysis shows the ortholog genes that are clustered with only rice, representing a common ancestor. Promoter analysis revealed the identification of different cis-acting elements that are responsible for abiotic as well as biotic stresses. Hsf domains like DBD, NLS, NES, and AHA have been analyzed for their sequence similarity and functional characterization. Tissue specific expression patterns of Hsfs in different tissues like mature embryo, seedling, root, and panicle were studied using real-time PCR. While Hsfs4 and 22 are highly expressed in panicle, 4 and 9 are expressed in seedlings. Sorghum plants were exposed to different abiotic stress treatments but no expression of any Hsf was observed when seedlings were treated with ABA. High level expression of Hsf1 was noticed during high temperature as well as cold stresses, 4 and 6 during salt and 5, 6, 10, 13, 19, 23 and 25 during drought stress. This comprehensive analysis of SbHsf genes will provide an insight on how these genes are regulated in different tissues and also under different abiotic stresses and help to determine the functions of Hsfs during drought and temperature stress tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.