In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
Establishing standard operating procedures (SOPs) as tools for the analysis of behavioral phenotypes is fundamental to mouse functional genomics. It is essential that the tests designed provide reliable measures of the process under investigation but most importantly that these are reproducible across both time and laboratories. For this reason, we devised and tested a set of SOPs to investigate mouse behavior. Five research centers were involved across France, Germany, Italy, and the UK in this study, as part of the EUMORPHIA program. All the procedures underwent a cross-validation experimental study to investigate the robustness of the designed protocols. Four inbred reference strains (C57BL/6J, C3HeB/FeJ, BALB/cByJ, 129S2/SvPas), reflecting their use as common background strains in mutagenesis programs, were analyzed to validate these tests. We demonstrate that the operating procedures employed, which includes open field, SHIRPA, grip-strength, rotarod, Y-maze, prepulse inhibition of acoustic startle response, and tail flick tests, generated reproducible results between laboratories for a number of the test output parameters. However, we also identified several uncontrolled variables that constitute confounding factors in behavioral phenotyping. The EUMORPHIA SOPs described here are an important start-point for the ongoing development of increasingly robust phenotyping platforms and their application in large-scale, multicentre mouse phenotyping programs.
The level of auxin - both natural and synthetic - in the medium has a strong effect on the level of 5-methyl-cytosine in the DNA of carrot cells in culture. This level may vary from approximately 15% to 70% of total cytosine without apparent effects on growth rate and cell morphology. No effect was seen with cytokinin. During somatic embryogenesis, in the absence of hormones, variations were seen in the level of methylation according to a characteristic pattern. If hypomethylation is induced with drugs such as azacytidine, ethionine or ethoxy-carbonyl-pyrimidine, embryogenesis is immediately blocked. A mutant was isolated which is resistant to the action of hypomethylating drugs. It shows variations in the methylation pattern and variations in indole-acetic acid metabolism. In addition its regeneration is often associated with the production of tumors.
The orphan G protein-coupled receptor 37 (GPR37) is a substrate of parkin; its insoluble aggregates accumulate in brain samples of Parkinson's disease patients. We report here that GPR37 interacts with the dopamine transporter (DAT) and modulates DAT activity. GPR37 and DAT were found colocalized in mouse striatal presynaptic membranes and in transfected cells and their interaction was confirmed by coimmunoprecipitation assays. Gpr37-null mutant mice showed enhanced DAT-mediated dopamine uptake in striatal membrane samples, with a significant increase in the number of plasma membrane DAT molecules. The null mutant mice also exhibited a decrease in cocaine-induced locomotor activity and in catalepsy induced by dopamine receptor antagonists. These results reveal the specific role of GPR37, a putative peptidergic G proteincoupled receptor, in modulating the functional expression of DAT and the behavioral responses to dopaminergic drugs.G protein-coupled receptor ͉ Parkinson's disease ͉ dopamine transporter T he orphan G protein-coupled receptor 37 (GPR37) is homologous to endothelin (ET B -R) and bombesin (GRP-R, NMB-R) receptors (1) and it is highly expressed in mammalian brain oligodendrocytes, Purkinje cells, and neurons belonging to the CA3 hippocampal region and to the substantia nigra (SN) pars compacta (2). GPR37 is a substrate of the ubiquitin-protein ligase parkin, and it has been named parkin-associated endothelin-like receptor (PAEL-R) (3). An insoluble form of GPR37 is accumulated in brain samples of Parkinson's disease (PD) patients, and the overexpression of GPR37 in cell cultures, in the absence of parkin, can lead to unfolded protein-induced cell death (3, 4). Little is known about the physiological function of the receptor in the brain and in dopaminergic neurons in particular, although it has been speculated that the aggregation of GPR37 in insoluble complexes is responsible for the preferential loss of SN neurons through the endoplasmic reticulum-specific apoptotic pathway (5, 6). Recent data reported an interaction between GPR37, the head activator neuropeptide and its binding protein (sorting protein-related receptor; SorLA), supporting the hypothesis that GPR37 is involved in neuronal cell survival (7). To investigate the receptor's function, we generated homozygous Gpr37-null mutant mice, which exhibit a reduction in striatal dopamine (DA) content, specific locomotor deficits, and enhanced sensitivity to amphetamine (8).Several binding partners for the DA transporter (DAT) have been identified, suggesting that a regulated multiprotein complex controls its synthesis, targeting, and expression at specific cellular membrane domains (9). Presynaptic DAT expression is of crucial importance in modulating the synaptic availability of DA at nigrostriatal synapses, and its regulation is dynamically controlled for the maintenance of normal dopaminergic neurotransmission. The increase or decrease of DAT expression in the presynaptic membranes results in decreased or increased synaptic DA concentration, ...
GPR37 is an orphan G protein-coupled receptor expressed in mammalian brain, and its insoluble aggregates are found in the brain samples of juvenile Parkinson's disease patients. We have produced a Gpr37 knock-out mouse strain and identified several phenotypic features that are similar to those reported for mutants of genes encoding components of synaptic dopamine vesicles. Our results reveal an unanticipated role of GPR37 in regulating substantia nigra-striatum dopaminergic signaling. Gpr37 ؊/؊ mice are viable, with normal brain development and anatomy, but they exhibit reduced striatal dopamine content, enhanced amphetamine sensitivity, and specific deficits in motor behavior paradigms sensitive to nigrostriatal dysfunction. These functional alterations are not associated with any substantial loss of substantia nigra neurons or degeneration of striatal dopaminergic afferences, the main histological marks of Parkinson's disease. The inactivation of GPR37, in fact, has protective effects on substantia nigra neurons, causing resistance to treatment with the Parkinsonian neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.