International audienceDry deposition of a submicron aerosol is studied in a wind tunnel to measure dry d0eposition velocities onto horizontal and vertical urban surfaces of glass, cement facing and grass for several wind speeds and to measure the turbulence parameters associated with these deposition velocities. These deposition velocities are then compared to data of the literature and to the results of two models for dry deposition. The dry deposition velocity of the fluorescein aerosol increases with the intensity of the turbulence. This highlights the importance of the turbulent processes of impaction and interception in deposition. However, the ratio of dry deposition velocity to friction velocity depends on the surface type. It depends on the turbulence conditions in the boundary layer. These turbulent dry deposition processes thus vary in importance depending on the studied surface. Finally, settling represents a significant part of the deposition for low wind speeds and for smooth surfaces. This wind tunnel study permits the study of the deposition as a function of turbulent processes. It should be supplemented by in situ experiments
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.