Candida albicans maintains both commensal and pathogenic states in humans. Here, we have defined the genomic response to osmotic stress mediated by transcription factor Sko1. We performed microarray analysis of a sko1Δ/Δ mutant strain subjected to osmotic stress, and we utilized gene sequence enrichment analysis and enrichment mapping to identify Sko1-dependent osmotic stress-response genes. We found that Sko1 regulates distinct gene classes with functions in ribosomal synthesis, mitochondrial function, and vacuolar transport. Our in silico analysis suggests that Sko1 may recognize two unique DNA binding motifs. Our C. albicans genomic analyses and complementation studies in Saccharomyces cerevisiae showed that Sko1 is conserved as a regulator of carbohydrate metabolism, redox metabolism, and glycerol synthesis. Further, our real time-qPCR results showed that osmotic stress-response genes that are dependent on the kinase Hog1 also require Sko1 for full expression. Our findings reveal divergent and conserved aspects of Sko1-dependent osmotic stress signaling.
The human fungal pathogen Candida albicans is constantly exposed to environmental challenges impacting the cell wall. Signaling pathways coordinate stress adaptation and are essential for commensalism and virulence. The transcription factors Sko1, Cas5, and Rlm1 control the response to cell wall stress caused by the antifungal drug caspofungin. Here, we expand the Sko1 and Rlm1 transcriptional circuit and demonstrate that Rlm1 activates Sko1 cell wall stress signaling. Caspofungin-induced transcription of SKO1 and several Sko1dependent cell wall integrity genes are attenuated in an rlm1Δ/Δ mutant strain when compared to the treated wild-type strain but not in a cas5Δ/Δ mutant strain. Genome-wide chromatin immunoprecipitation (ChIP-seq) results revealed numerous Sko1 and Rlm1 directly bound target genes in the presence of caspofungin that were undetected in previous gene expression studies. Notable targets include genes involved in cell wall integrity, osmolarity, and cellular aggregation, as well as several uncharacterized genes. Interestingly, we found that Rlm1 does not bind to the upstream intergenic region of SKO1 in the presence of caspofungin, indicating that Rlm1 indirectly controls caspofungin-induced SKO1 transcription. In addition, we discovered that caspofungin-induced SKO1 transcription occurs through selfactivation. Based on our ChIP-seq data, we also discovered an Rlm1 consensus motif unique to C. albicans. For Sko1, we found a consensus motif similar to the known Sko1 motif for Saccharomyces cerevisiae. Growth assays showed that SKO1 overexpression suppressed caspofungin hypersensitivity in an rlm1Δ/Δ mutant strain. In addition, overexpression of the glycerol phosphatase, RHR2, suppressed caspofungin hypersensitivity specifically in a sko1Δ/Δ mutant strain. Our findings link the Sko1 and Rlm1 signaling pathways, identify new biological roles for Sko1 and Rlm1, and highlight the complex dynamics underlying cell wall signaling.
Sodium dehydrocholate was applied topically to the right hemispheric cortex of eight rats and the electrocorticogram was monitored from both the treated cortex and the homotopic cortex of the contralateral hemisphere. All animals developed blood-brain barrier (BBB) disruption in the treated cortex as evidenced by cortical staining with systemically administered Evans blue dye. Spike activity developed in three of eight animals after the topical application of dehydrocholate. The subsequent intravenous injection of sodium dehydrocholate provoked spike activity in both hemispheres in all eight animals. Dependent and independent spike activity was recorded in the nondisrupted hemisphere. The intravenous administration of gamma-aminobutyric acid (GABA) resulted in alterations in spike activity in four of five animals because of penetration of the GABA through the altered BBB. These findings demonstrate that sodium dehydrocholate can result in increased BBB permeability when applied directly to the cortical surface. Spike activity subsequent to the topical application of dehydrocholate can be enhanced by systemic loading with dehydrocholate. Spike activity occurring over the nontreated cortex (secondary focus) represents interhemispheric propagation of spike activity from the disrupted hemisphere (primary focus). The lack of Evans blue staining in the actively discharging secondary focus suggests that spike activity does not account for the increases in BBB permeability observed with dehydrocholate treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.