The surface snow density of glaciers and ice sheets is of fundamental importance in converting volume to mass in both altimetry and surface mass balance studies, yet it is often poorly constrained. Site-specific surface snow densities are typically derived from empirical relations based on temperature and wind speed. These parameterizations commonly calculate the average density of the top meter of snow, thereby systematically overestimating snow density at the actual surface. Therefore, constraining surface snow density to the top 0.1 m can improve boundary conditions in high-resolution firn-evolution modeling. We have compiled an extensive dataset of 200 point measurements of surface snow density from firn cores and snow pits on the Greenland ice sheet. We find that surface snow density within 0.1 m of the surface has an average value of 315 kg m −3 with a standard deviation of 44 kg m −3 , and has an insignificant annual air temperature dependency. We demonstrate that two widely-used surface snow density parameterizations dependent on temperature systematically overestimate surface snow density over the Greenland ice sheet by 17-19%, and that using a constant density of 315 kg m −3 may give superior results when applied in surface mass budget modeling.
The National Center for Education Statistics (NCES) is the primary federal entity for collecting, analyzing, and reporting data related to education in the United States and other nations. It fulfills a congressional mandate to collect, collate, analyze, and report full and complete statistics on the condition of education in the United States; conduct and publish reports and specialized analyses of the meaning and significance of such statistics; assist state and local education agencies in improving their statistical systems; and review and report on education activities in foreign countries. NCES activities are designed to address high priority education data needs; provide consistent, reliable, complete, and accurate indicators of education status and trends; and report timely, useful, and high quality data to the U.S. Department of Education, the Congress, the states, other education policymakers, practitioners, data users, and the general public. We strive to make our products available in a variety of formats and in language that is appropriate to a variety of audiences. You, as our customer, are the best judge of our success in communicating information effectively.
A foehn event on 27 January 2011 over the Larsen C Ice Shelf (LCIS), Antarctic Peninsula and its interaction with an exisiting ground-based cold-air pool is simulated using the MetUM atmospheric model at kilometre and sub-kilometre scale grid spacing. Atmospheric model simulations at kilometre grid scales are an important tool for understanding the detailed circulation and temperature structure over the LCIS, especially the occurrence of foehn-induced surface melting, erosion of cold-air pools, and low-level wind jets (so-called foehn jets).But whether there is an improvement/convergence in the model representation of these features at sub-kilometre grid scales has yet to be established. The foehn event was simulated at grid spacings of 4, 1.5 and 0.5 km, with the results compared to automatic weather station and radiosonde measurements. The features commonly associated with foehn, such as a leeside hydraulic jump and enhanced leeside warming, were comparatively insensitive to resolution in the 4 to 0.5 km range, although the 0.5 km simulation shows a slightly sharper and larger hydraulic jump. By contrast, during the event the simulation of fine-scale foehn jets above the cold-air pool showed considerable dependence on grid spacing, although no evidence of convergence at higher resolution. During the foehn event, the MetUM model is characterised by a nocturnal cold bias of around 8 • C and an underestimate of the near-surface stability of the cold-air pool, neither of which improved with increased resolution. This finding identifies a key model limitation, at both kilometre and sub-kilometre scales, to realistically capture the vertical mixing in the boundary layer and its impact on thermodynamics, through either daytime heating from below or the downward penetration of foehn jet winds from above. Detailed model-resolved foehn jet dynamics thusThis is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.