BACKGROUND A high body-mass index (BMI, the weight in kilograms divided by the square of the height in meters) is associated with increased mortality from cardiovascular disease and certain cancers, but the precise relationship between BMI and all-cause mortality remains uncertain. METHODS We used Cox regression to estimate hazard ratios and 95% confidence intervals for an association between BMI and all-cause mortality, adjusting for age, study, physical activity, alcohol consumption, education, and marital status in pooled data from 19 prospective studies encompassing 1.46 million white adults, 19 to 84 years of age (median, 58). RESULTS The median baseline BMI was 26.2. During a median follow-up period of 10 years (range, 5 to 28), 160,087 deaths were identified. Among healthy participants who never smoked, there was a J-shaped relationship between BMI and all-cause mortality. With a BMI of 22.5 to 24.9 as the reference category, hazard ratios among women were 1.47 (95 percent confidence interval [CI], 1.33 to 1.62) for a BMI of 15.0 to 18.4; 1.14 (95% CI, 1.07 to 1.22) for a BMI of 18.5 to 19.9; 1.00 (95% CI, 0.96 to 1.04) for a BMI of 20.0 to 22.4; 1.13 (95% CI, 1.09 to 1.17) for a BMI of 25.0 to 29.9; 1.44 (95% CI, 1.38 to 1.50) for a BMI of 30.0 to 34.9; 1.88 (95% CI, 1.77 to 2.00) for a BMI of 35.0 to 39.9; and 2.51 (95% CI, 2.30 to 2.73) for a BMI of 40.0 to 49.9. In general, the hazard ratios for the men were similar. Hazard ratios for a BMI below 20.0 were attenuated with longer-term follow-up. CONCLUSIONS In white adults, overweight and obesity (and possibly underweight) are associated with increased all-cause mortality. All-cause mortality is generally lowest with a BMI of 20.0 to 24.9.
In a pooled analysis of 20 prospective studies, Cari Kitahara and colleagues find that class III obesity (BMI of 40–59) is associated with excess rates of total mortality, particularly due to heart disease, cancer, and diabetes. Please see later in the article for the Editors' Summary
Objectives: To explore whether mortality from female breast, ovarian, colon, and prostate cancer were negatively associated with exposure to sunlight. Methods: A death certificate based case-control study of mortality was conducted into five cancers: female breast, ovarian, colon, prostate, and non-melanoma skin cancer (as a positive control) to examine associations with residential and occupational exposure to sunlight. Cases were all deaths from these cancers between 1984 and 1995 in 24 states of the United States. Controls, which were age frequency matched to a series of cases, excluded deaths from cancer and certain neurological diseases. Multiple logistic regression was used in a model that included age, sex, race, residential exposure to sunlight (based on region), and socioeconomic status, occupational exposure to sunlight, and physical activity (the last three based on usual occupation). Results: Residential exposure to sunlight was negatively and significantly associated with mortality from female breast, ovarian, prostate, and colon cancer. Only female breast and colon cancer, however, also showed significant negative associations with jobs with the highest occupational exposure to sunlight (odds ratio (OR) 0.82 (95% confidence interval (95% CI) 0.70 to 0.97) for female breast cancer; OR 0.90 (95% CI 0.86 to 0.94) for colon cancer). For both cancers, the negative association with occupational sunlight was greatest in the geographical region of highest exposure to sunlight and was independent of physical activity on the job. Non-melanoma skin cancer, as expected, was positively associated with both residential and occupational sunlight. Conclusions: In this exploratory study, unlike mortality from non-melanoma skin cancer, mortality from female breast cancer and colon cancer were negatively associated with both residential and occupational sunlight. I t is well established that exposure to sunlight contributes to non-melanoma skin cancer.1 By contrast, several ecological studies suggest that sunlight may protect against female breast, 2 3 ovarian, 4 prostate, 5 6 and colon cancer, 7 all diseases that contribute to a substantially higher proportion of cancer mortality in the western industrialised world. Some analytical studies, although not all, [8][9][10][11] also suggest a protective association between circulating vitamin D in blood, which is largely derived from sunlight, 12 To our knowledge, no epidemiological study has examined the relation between ovarian, prostate, or colon cancers and sunlight from non-residential sources, and only one, a recent cohort study, 15 has examined these factors for breast cancer. We conducted a set of death certificate based case-control studies of mortality from female breast, ovarian, prostate, colon, and non-melanoma skin cancers in the United States. As an improvement over geography based ecological mortality studies, we assessed potential exposure to sunlight based on occupational data on individual death certificates. The findings for breast, ovarian, colon, a...
Ecologic studies have reported that solar ultraviolet radiation (UVR) exposure is associated with cancer, but little evidence is available from prospective studies. We aimed to assess the association between an objective measure of ambient UVR exposure and risk of total and site-specific cancer in a large, regionally diverse cohort (450,934 white, non-Hispanic subjects (50-71 years old) in the prospective NIH-AARP Diet and Health Study) after accounting for individual-level confounding risk factors. Estimated erythemal UVR exposure from satellite Total Ozone Mapping Spectrometer (TOMS) data from NASA was linked to the U.S. Census Bureau 2000 census tract (centroid) of baseline residence for each subject. We used Cox proportional hazards models adjusted for multiple potential confounders to estimate hazard ratios (HR) and 95% confidence intervals (CI) for quartiles of UVR exposure. Restricted cubic splines examined non-linear relationships. Over 9 years of follow-up, UVR exposure was inversely associated with total cancer risk (N=75,917; highest vs. lowest quartile, HR=0.97 (0.95, 0.99), p-trend<0.001). In site-specific cancer analyses, UVR exposure was associated with increased melanoma risk (highest vs. lowest quartile, HR=1.22 (1.13, 1.32), p-trend<0.001) and decreased risk of Non-Hodgkin’s lymphoma (HR=0.82 (0.74, 0.92)) and colon (HR=0.88 (0.82, 0.96)), squamous cell lung (HR=0.86 (0.75, 0.98)), pleural (HR=0.57 (0.38, 0.84)), prostate (HR=0.91 (0.88, 0.95)), kidney (HR=0.83 (0.73, 0.94)), and bladder (HR=0.88 (0.81, 0.96)) cancers (all p-trend<0.05). We also found non-linear associations for some cancer sites, including the thyroid and pancreas. Our results add to mounting evidence for the influential role of UVR exposure on cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.