Reduced graphene oxide and copper oxide multilayer structures were fabricated in a planar configuration by deposition on both ceramic and Si/SiO2 substrates with interdigitated Au electrodes by the spray method. SEM (scanning electron microscopy), TEM (transmission electron microscopy), XRD (X-ray diffraction), and elemental analysis investigations indicated that graphene oxide (GO) was obtained in a form of interconnected flakes consisting of 6–7 graphene layers for GO with the total thickness of ca. 6 nm and 2–3 layers for rGO with the total thickness of 1nm. The lateral size of one flake reached up to 10 micrometers. Copper oxide was obtained by the wet chemical method. The number of sequential layers of the sensing structure was optimized to obtain good sensitivity and acceptable response/recovery times in response to the oxidizing nitrogen dioxide atmosphere. Both semiconductor partners revealed p-type conductivity. Formation of isotype heterojunctions between both semiconductor partners was taken into account and their influence on electrical transport explained. Optimized sensor structures revealed relative sensitivities reaching several tens of percent and acceptable response and recovery times in NO2 concentration ranged from a few to 20 ppm. Possibility of manufacturing sensors working at room temperature was shown, but at the cost of prolonged response/recovery times.
Multilayers consisting of graphene oxide (GO) and α-Fe2O3 thin layers were deposited on the ceramic substrates by the spray LbL (layer by layer) coating technique. Graphene oxide was prepared from graphite using the modified Hummers method. Obtained GO flakes reached up to 6 nanometers in thickness and 10 micrometers in lateral size. Iron oxide Fe2O3 was obtained by the wet chemical method from FeCl3 and NH4OH solution. Manufactured samples were deposited as 3 LbL (GO and Fe2O3 layers deposited sequentially) and 6 LbL structures with GO as a bottom layer. Electrical measurements show the decrease of multilayer resistance after the introduction of the oxidizing NO2 gas to the ambient air atmosphere. The concentration of NO2 was changed from 1 ppm to 20 ppm. The samples changed their resistance even at temperatures close to room temperature, however, the sensitivity increased with temperature. Fe2O3 is known as an n-type semiconductor, but the rGO/Fe2O3 hybrid structure behaved similarly to rGO, which is p-type. Both chemisorbed O2 and NO2 act as electron traps decreasing the concentration of electrons and increasing the effective multilayer conductivity. An explanation of the observed variations of multilayer structure resistance also the possibility of heterojunctions formation was taken into account.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.