Annual legumes represent one of the basic elements of the agriculture of Serbia. Until recently, only annual forage legumes such as pea or vetches were autumn-sown in Serbia and other neighbouring regions of the continental Balkan Peninsula. During the last decade, the first crucial steps in the development of autumn-sown grain legumes were made, with emphasis on dry pea, faba bean and dual-purpose vetches. The winter forage pea cultivars developed in Serbia are generally characterised by prominent winter hardiness and a rather extended growing season, usually beginning with sowing in early October and ending either by cutting for forage production in late May or harvesting seeds in mid-July. One of the strategic advantages of recently released cultivars of autumn-sown dry pea is their significantly improved earliness. The Serbian winter dry pea cultivar Mraz, newly registered in Serbia and developed from hybrids between French and Serbian autumn-hardy materials, is regularly at least a week earlier than winter barley, so many farmers will not have to choose between pea and cereals due to limited harvesting resources. The initial material for pre-breeding autumn-sown faba bean in the conditions of Serbia consisted of both collected local landraces of Serbia and populations from France and Germany. The preliminary results of their agronomic performance showed that they have a great potential for high grain yield in the conditions of Serbia. Promising results in breeding winter hardy cultivars were achieved with several vetch species, as well as with lentil and grass pea, and will be continued with more species including Medicago truncatula.
In order to determine an optimum ratio of vetch and wheat (Triticum aestivum L.) components in their mixture, there has been carried out a four-year trial (autumn 2005-spring 2009) aimed at the yield and quality of winter vetch haylage. The sowing rate of winter vetch was 120 kg ha-1 , while the sowing rate of winter wheat was 0, 15, 20, 25 and 30 kg ha-1. An increased proportion of the cereal in its mixture with vetch significantly decreases the stand lodging, have a positive influence on forage yield, but haylage quality is of a poorer quality. Quality characteristics such as crude protein and lignin content, total digestible nutrients, dry matter intake and relative feed value were highest in monoculture common vetch followed by mixture with the lowest rate of wheat. Neutral detergent fiber content was positively affected by intercropping. There were no significant differences among treatments for acid detergent fiber content, digestible dry matter, and net energy for lactation. The most favorable balance between the haylage yield and quality, as well as the highest CP yield (1482 kg ha-1), was achieved by the mixture of 120 kg ha-1 of the vetch seed and 15 kg ha-1 of wheat.
Alfalfa is an autotetraploid, allogamous and heterozygous forage legume, whose varieties are synthetic populations. Due to the complex nature of the species, information about genetic diversity of germplasm used in any alfalfa breeding program is most beneficial. The genetic diversity of five alfalfa varieties, involved in progeny tests at Institute of Field and Vegetable Crops, was characterized based on RAPD markers. A total of 60 primers were screened, out of which 17 were selected for the analysis of genetic diversity. A total of 156 polymorphic bands were generated, with 10.6 bands per primer. Number and percentage of polymorphic loci, effective number of alleles, expected heterozygosity and Shannon’s information index were used to estimate genetic variation. Variety Zuzana had the highest values for all tested parameters, exhibiting the highest level of variation, whereas variety RSI 20 exhibited the lowest. Analysis of molecular variance (AMOVA) showed that 88.39% of the total genetic variation was attributed to intra-varietal variance. The cluster analysis for individual samples and varieties revealed differences in their population structures: variety Zuzana showed a very high level of genetic variation, Banat and Ghareh were divided in subpopulations, while Pecy and RSI 20 were relatively uniform. Ways of exploiting the investigated germplasm in the breeding programs are suggested in this paper, depending on their population structure and diversity. The RAPD analysis shows potential to be applied in analysis of parental populations in semi-hybrid alfalfa breeding program in both, development of new homogenous germplasm, and identification of promising, complementary germplasm.
The objective of this study was to develop diallel population hybrids by crossing selected germplasm and to determine the gene effects and genetic control of yield and yield components using diallel analysis. A complete diallel including reciprocals was made during 2003 and 2004 between five alfalfa cultivars of different geographic origin. For each pairwise cross, five plants were chosen at random from each of the two cultivars (*100 florets per plant) to obtain the F 1 generation. A spaced plant field was established in 2006 which included the five alfalfa cultivars (parents) and their 20 diallel hybrids (F 1 ). The results of the diallel analysis suggest that the genetic control of major agronomic traits is determined by both additive gene action (accumulation of frequency of desirable alleles represented by significant GCA effects) and nonadditive gene action (complementary gene interactions represented by significant SCA effects). This type of gene action expression in alfalfa also determines the way in which breeding is carried out and brings about changes in the methods used and has given rise to the idea of the semi-hybrid breeding of this crop. The concept involves: breeding alfalfas within the population, identification of heterotic germplasm, and the production of seed of the population hybrid (PH).
The molecular diversity studies of alfalfa (Medicago sativa L.) germplasm could contribute to a more precise selection of parental populations in many breeding programs. Sequence-related amplified polymorphism (SRAP) markers were used to assess the genetic diversity of 110 individual plants from 13 selected alfalfa cultivars, landraces, and natural populations from Tunisia, Australia, Serbia, and Kazakhstan. Ten polymorphic SRAP primer combinations generated 137 alleles with 0.90 polymorphism information content. The percentage of polymorphic bands per genotype ranged from 57.66% to 70.07% with a mean of 64.29% and overall value of 100%. The genotype Sardi 10 had the highest value for the effective number of alleles; Nei's gene diversity and Shannon information index, exhibited the highest variability level (Ne = 1.453, He = 0.259, I = 0.381, respectively), whereas the genotype Nera exhibited the lowest variability level (Ne = 1.359, He = 0.211, I = 0.317, respectively). The AMOVA analysis showed that 68% of the variance was within the genotypes; this was in line with the coefficient of genetic differentiation (Gst = 0.370). The genetic relatedness of alfalfa individuals analyzed by the neighbor-joining dendrogram was consistent with the Bayesian model-based clustering approach. The exceptions were individuals from genotypes Slavija and Nera, which were grouped separately by STRUCTURE analyses. These results provide useful information for the management of alfalfa genetic resources and the rational use of local and foreign alfalfa populations in breeding programs focused on the development of new, high-yielding cultivars more adapted to drought conditions in North Africa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.