The findings in this study correspond to similar research undertaken in Ethiopia by detecting L. monocytogenes with similar prevalence rates. Public education is crucial as regards the nature of this organism and relevant prevention measures. Moreover, further research in clinical samples should be carried out to estimate the prevalence and carrier rate in humans, and future investigations on foodborne outbreaks must include L. monocytogenes.
SUMMARYThe potential of cyanobacteria-based compost formulations was evaluated in cotton crop at two agroecological locations (Nagpur and Sirsa) as plant growth promoting (PGP) and biocontrol agents. Compostbased formulations fortified with Calothrix sp. or Anabaena sp. enhanced germination and fresh weight of plants, and microbiological activity by 10-15%, besides increased available nitrogen (by 20-50%) in soil at Nagpur. In the fungi-infected fields at Sirsa, Anabaena-T. viride biofilmed formulation performed the best, recording 11.1% lower plant mortality than commercial Trichoderma formulation. Scanning electron microscopy confirmed the colonisation of inoculated cyanobacteria/biofilms on roots. Significant correlation between mortality, increased activity of hydrolytic enzymes and fresh weight of plant roots were recorded. Calothrix sp. and Anabaena sp. proved promising as both PGP and biocontrol agents, while biofilmed formulations substantially reduced mortality of cotton plants in sick plots. This study illustrates the promise of cyanobacteria as viable inoculation option for integrated nutrient and pest management strategies of cotton.
Background Cotton leaf curl disease (CLCuD), caused by begomoviruses in association with satellite molecules, is a major threat to cotton production causing enormous losses to cotton crop in most of the cotton growing countries including Indian subcontinent. In this study, isolates of begomovirus and satellite molecules associated with CLCuD were collected from North India (Haryana, New Delhi). They were amplified employing rolling circle replication mechanism, cloned, sequenced and, their phylogenetic and recombination analysis was performed. Results The five Cotton leaf curl Multan virus (CLCuMuV) isolates investigated in this study showed monopartite organization of the genome typical of Old World begomoviruses. Nucleotide sequence analyses assigned them as the strains of CLCuMuV and were designated as CLCuMuV-SR13, CLCuMuV-SR14, CLCuMuV-ND14, CLCuMuV-ND15 and CLCuMuV-SR15. The genome of CLCuMuV-SR13 shared a highest level of nucleotide sequence identity (98%) with CLCuMuV (JN678804), CLCuMuV-SR14 and CLCuMuV-SR15 exhibited 96% with CLCuMuV (KM096471), while isolates CLCuMuV-ND15 and CLCuMuV-SR15 revealed 96% sequence identity with CLCuMuV (AY765253). The four betasatellite molecules investigated in this study shared 95–99% nucleotide sequence identity with Cotton leaf curl Multan betasatellite (CLCuMB) from India. The betasatellite molecules were designated as CLCuMB-SR13, CLCuMB-SR14, CLCuMB-ND14 and CLCuMB-ND15. Alphasatellite molecules in this study, designated as GLCuA-SR14, GLCuA-ND14 and GLCuA-SR15, revealed 98% identity with Guar leaf curl alphasatellite (GLCuA) reported from Pakistan. Conclusion The phylogenetic and recombination studies concluded that the isolates of CLCuMuV genomes undertaken in this study have a potential recombinant origin. Remarkably, significant recombination was detected in almost all the genes with contribution of Cotton leaf curl Kokhran Virus (CLCuKoV) in IR, V1, V2, C1, C4 and C5 regions and of CLCuMuV in C2 region of CLCuMuV-SR14. CLCuKoV also donated in C2, C3 regions of CLCuMuV-ND14; V1, V2, C2 and C3 regions of CLCuMuV-ND15 and C1 of CLCuMuV-SR15. Altogether, these observations signify the uniqueness in Indian CLCuMuV isolates showing contribution of CLCuKoV in all the genes. An interesting observation was frequent identification of GLCuA in CLCuD leaf samples. Electronic supplementary material The online version of this article (10.1186/s12864-019-5640-2) contains supplementary material, which is available to authorized users.
One hundred and forty two cotton germplasm lines were screened for cotton leaf curl virus symptoms in field evaluations during 2003, 2004, and 2005. Fifty cross combinations involving 30 of these lines classified resistant or susceptible were used for inheritance study of the disease. All the F(1) plants of crosses involving resistant x resistant, resistant x susceptible, and susceptible x resistant parents were resistant, indicating dominant expression of the disease resistance and there were no maternal or cytoplasmic effects detected from reciprocal hybridization. In 22 crosses, 4 types of segregation patterns were obtained in the F(2) generations. A good fit for 15 (resistant):1 (susceptible), 13 (resistant):3 (susceptible), 9 (resistant):7 (susceptible) ratios indicated digenic control of the trait with duplicate dominant, dominant inhibitory, and duplicate recessive epistasis, respectively. Three-gene control with triplicate dominant epistasis was obtained in one of the crosses. This segregation pattern, however, needs further confirmation due to smaller population size. The absence of complementary gene action was obtained in 1 susceptible x susceptible and 27 resistant x resistant crosses as their F(1)s were susceptible and resistant, respectively, and F(2) generation lacked segregation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.