The maintenance of a calcium gradient and vesicle secretion in the apex of pollen tubes is essential for growth. It is shown here that phosphatidylinositol-4,5-bisphosphate (PIP2) and D-myo-inositol-1,4,5-trisphosphate (IP3), together with phosphatidic acid (PA), play a vital role in the regulation of these processes. Changes in the intracellular concentration of both PIP2 and IP3 (induced by photolysis of caged-probes), modified growth and caused reorientation of the growth axis. However, measurements of cytosolic free calcium ([Ca2+]c) and apical secretion revealed significant differences between the photo-release of PIP2 or IP3. When released in the first 50 mum of the pollen tube, PIP2 led to transient growth perturbation, [Ca2+]c increases, and inhibition of apical secretion. By contrast, a concentration of IP3 which caused a [Ca2+]c transient of similar magnitude, stimulated apical secretion and caused severe growth perturbation. Furthermore, the [Ca2+]c transient induced by IP3 was spatially different causing a pronounced elevation in the sub-apical region. These observations suggest different targets for the two phosphoinositides. One of the targets is suggested to be PA, a product of PIP2 hydrolysis via phospholipase C (PLC) or phospholipase D (PLD) activity. It was found that antagonists of PA accumulation (e.g. butan-1-ol) and inhibitors of PLC and PLD reversibly halted polarity. Reduction of PA levels caused the dissipation of the [Ca2+]c gradient and inhibited apical plasma membrane recycling. It was also found to cause abolition of the apical zonation. These data suggest that phosphoinositides and phospholipids regulate tip growth through a multiple pathway system involving regulation of [Ca2+]c levels, endo/exocytosis, and vesicular trafficking.
SummaryOur present understanding implicates both calmodulin (CaM) and 3 H ,5 H -cyclicAMP (cAMP) in the regulation of pollen tube growth. However, downstream molecules of these signalling pathways and the cellular processes they modulate remain largely unknown. In order to elucidate the role of CaM, we mapped its activity in growing pollen tubes. 2-chloro-(e-amino-Lys 75 )- [6-4-(,¯uorescent analogues of CaM, were loaded into pollen tubes and CaM activity was mapped by¯uorescence ratio imaging. It was found that CaM activity exhibits a tip-focused gradient, similar to the distribution of cytosolic-free calcium ([Ca 2 ] c ). In long pollen tubes, apical CaM activity was also found to oscillate with a period similar to [Ca 2 ] c (40±80 sec). This oscillatory behaviour was not observed in small pollen tubes or in tubes that had stopped growing. Changes in CaM activity within the dome of the pollen tube apex resulting from the photolysis of caged photolysis of RS-20 (a peptide antagonist of CaM) induced re-orientation of the growth axis, suggesting that CaM is also involved in the guidance mechanism. CaM activity was strongly modulated by intracellular changes in cAMP (induced by activators and antagonists of adenylyl cyclase). These results indicate that the action of this protein is dependent not solely on [Ca 2 ] c but also on a cross-talk with other signalling pathways. A putative target of this cross-talk is the secretory machinery as observed in pollen tubes loaded with the FM (N-(3-triethylammoniumpropyl)-4-(4-dibutylamino)styryl)pyridinium dibromide 1-43 dye and exposed to different antagonists and activators of these molecules. Our data thus suggest that pollen tube growth and orientation depend on an intricate cross-talk between multiple signalling pathways in which CaM is a key element.
Summary.Signalling is an integral component in the establishment and maintenance of cellular identity. In plants, tip-growing cells represent an ideal system to investigate signal transduction mechanisms, and among these, pollen tubes (PTs) are one of the favourite models. Many signalling pathways have been identified during germination and tip growth, namely, Ca 2ϩ , calmodulin, phosphoinositides, protein kinases, cyclic AMP, and GTPases. These constitute a large and complex web of signalling networks that intersect at various levels such as the control of vesicle targeting and fusion and the physical state of the actin cytoskeleton. Here we discuss some of the most recent advances made in PT signal transduction cascades and their implications for our future research. For reasons of space, emphasis was given to signalling mechanisms that control PT reorientation, so naturally many other relevant works have not been cited.
In plants, tip-growing cells represent an ideal system to investigate signal transduction mechanisms, and among those, pollen tubes are one of the favourite models. Many signalling pathways have been identified during germination and tip growth, namely, Ca2+, calmodulin, phosphoinositides, cyclic AMP, and GTPases. Not surprisingly, the apical secretory machinery, essential for tip growth, seems to be an intersection point for all these pathways. Recently, the phospholipid phosphatidic acid was also suggested to actively participate in the control of endo- and exocytosis and to interfere with the correct positioning of the actin cytoskeleton. Phosphatidic acid seems to act concertedly with the phosphoinositides phosphatidylinositol 4,5-bisphosphate and D-myo-inositol 1,4,5-trisphosphate. Here we review previous data and discuss additional evidence that these three molecules have a combined action modulating both the actin cytoskeleton and the apical secretory machinery. We further discuss how these findings can be integrated into a working model for pollen tube apical secretion that contemplates the existence of a rapid endocytosis mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.