The spatial patterns of diffuse, primitive, classic (cored) and compact (burnt-out) subtypes of beta/A4 deposits were studied in coronal sections of the frontal lobe and hippocampus, including the adjacent gyri, in nine cases of Alzheimer's disease (AD). If the more mature deposits were derived from the diffuse deposits then there should be a close association between their spatial patterns in a brain region. In the majority of tissues examined, all deposit subtypes occurred in clusters which varied in dimension from 200 to 6400 microns. In many tissues, the clusters appeared to be regularly spaced parallel to the pia or alveus. The mean dimension of the primitive deposit clusters was greater than those of the diffuse, classic and compact types. In about 60% of cortical tissues examined, the clusters of primitive and diffuse deposits were not in phase, i.e. they alternated along the cortical strip. Clusters of classic deposits appeared to be distributed independently of the diffuse deposit clusters. Cluster size of the primitive deposits was positively correlated with the density of the primitive deposits in a tissue but no such relationship could be detected for the diffuse deposits. This study suggested that there was a complex relationship between the clusters of the different subtypes of beta/A4 deposits. If the diffuse deposits do give rise to the primitive and classic varieties then factors unrelated to the initial deposition of beta/A4 in the form of diffuse plaques were important in the formation of the mature deposits.
In Alzheimer''s disease (AD), the ''Cascade hypothesis'' proposes that the formation of paired helical filaments (PHF) may be causally linked to the deposition of β/A4 protein. Hence, there should be a close spatial relationship between senile plaques and cellular neurofibrillary tangles in a local region of the brain. In tissue from 6 AD patients, plaques and tangles occurred in clusters and individual clusters were often regularly spaced along the cortical strip. However, the clusters of plaques and tangles were in phase in only 4/32 cortical tissues examined. Hence, the data were not consistent with the ''Cascade hypothesis'' that β/A4 and PHF are directly linked in AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.